分割
计算机科学
推论
核(代数)
人工智能
网(多面体)
编码(集合论)
匹配(统计)
图像(数学)
模式识别(心理学)
二部图
理论计算机科学
数学
程序设计语言
集合(抽象数据类型)
统计
组合数学
图形
几何学
作者
Wenwei Zhang,Jiangmiao Pang,Kai Chen,Chen Change Loy
出处
期刊:Cornell University - arXiv
日期:2021-01-01
被引量:5
标识
DOI:10.48550/arxiv.2106.14855
摘要
Semantic, instance, and panoptic segmentations have been addressed using different and specialized frameworks despite their underlying connections. This paper presents a unified, simple, and effective framework for these essentially similar tasks. The framework, named K-Net, segments both instances and semantic categories consistently by a group of learnable kernels, where each kernel is responsible for generating a mask for either a potential instance or a stuff class. To remedy the difficulties of distinguishing various instances, we propose a kernel update strategy that enables each kernel dynamic and conditional on its meaningful group in the input image. K-Net can be trained in an end-to-end manner with bipartite matching, and its training and inference are naturally NMS-free and box-free. Without bells and whistles, K-Net surpasses all previous published state-of-the-art single-model results of panoptic segmentation on MS COCO test-dev split and semantic segmentation on ADE20K val split with 55.2% PQ and 54.3% mIoU, respectively. Its instance segmentation performance is also on par with Cascade Mask R-CNN on MS COCO with 60%-90% faster inference speeds. Code and models will be released at https://github.com/ZwwWayne/K-Net/.
科研通智能强力驱动
Strongly Powered by AbleSci AI