避障
模型预测控制
计算机科学
障碍物
地平线
控制理论(社会学)
避碰
特征(语言学)
领域(数学分析)
非线性系统
人工智能
跟踪(教育)
控制(管理)
控制工程
工程类
数学
移动机器人
机器人
数学分析
几何学
心理学
法学
政治学
教育学
哲学
碰撞
物理
量子力学
语言学
计算机安全
作者
Marcelo A. Santos,Antonio Ferramosca,Guilherme V. Raffo
标识
DOI:10.1109/lars/sbr/wre54079.2021.9605408
摘要
This work proposes a single-layer nonlinear finite- horizon optimal control strategy to solve the autonomous navigation problem while providing obstacle avoidance feature in cluttered environments with unknown obstacles. Inspired by the tracking model predictive control framework, the central idea of including artificial variables into the control problem is considered. This approach allows to address the problem of combining different objectives and provide the closed- loop system with an enlarged domain of attraction and with feasibility insurances in the face of any changing reference. This idea is considered together with an avoidance cost functional to establish the basis of the obstacle avoidance feature of the strategy, while providing feasibility insurance in the presence of pop-up obstacles. Finally, numerical results for a quadrotor UAV are provided to corroborate the proposed strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI