Unsupervised missing information reconstruction for single remote sensing image with Deep Code Regression

编码(集合论) 回归 地理 人工智能 图像(数学) 计算机科学 地图学 缺少数据 回归分析 遥感 模式识别(心理学) 数据挖掘 统计 数学 机器学习 程序设计语言 集合(抽象数据类型)
作者
Jianhao Gao,Qiangqiang Yuan,Jie Li,Xin Su
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:105: 102599-102599 被引量:4
标识
DOI:10.1016/j.jag.2021.102599
摘要

• We propose Deep Code Regression to reconstruct gaps in remote sensing images. • The method can directly operate on the target in an unsupervised manner. • The method can deal with various kinds of gaps in a unified framework. Remote sensing images have been applied to many aspects in Earth observation work. However, tons of optical remote sensing images are abandoned due to the information loss caused by the clouds and damage of sensing instruments. Recently, many deep learning methods have been proposed to reconstruct the missing information of remote sensing images but they will be non-effective when it comes to the condition where there is no training dataset. In this paper, we propose an unsupervised method which can reconstruct single remote sensing image without training datasets in a deep neural network. The main idea is to process a reference image of the corrupted image with a deep self-regression network and extract the internal map, which possesses the same spatial information as the reference image. The residual information of the corrupted image is used to constrain the spectral authority of internal map to obtain the reconstruction results. We apply the proposed method in three conditions: 1) dead pixel reconstruction, 2) multitemporal reconstruction and 3) heterogeneous data reconstruction. We conduct simulation experiments and real data experiments in three conditions to confirm the superiority of our methods. The results show that the proposed method outperforms some state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白华苍松发布了新的文献求助10
1秒前
隐形曼青应助江峰采纳,获得10
2秒前
渊崖曙春应助Hosea采纳,获得10
2秒前
3秒前
学习要认真喽完成签到,获得积分10
3秒前
snow完成签到,获得积分10
4秒前
5秒前
萧晓发布了新的文献求助10
5秒前
自由山槐完成签到,获得积分10
6秒前
白菜包子完成签到 ,获得积分10
7秒前
8秒前
8秒前
ZYT完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
酷波er应助含蓄迎南采纳,获得10
10秒前
(讼)发布了新的文献求助10
10秒前
彭于晏应助孤独的金针菇采纳,获得30
10秒前
11秒前
12秒前
SciGPT应助堀川美嘉采纳,获得10
12秒前
意识难防滑完成签到,获得积分20
14秒前
14秒前
14秒前
情怀应助小秋采纳,获得10
14秒前
cyrong发布了新的文献求助10
16秒前
fouli发布了新的文献求助10
16秒前
英姑应助李哈哈采纳,获得10
17秒前
Cris完成签到,获得积分10
18秒前
wuxueyi发布了新的文献求助10
18秒前
Owen应助Lucky小M采纳,获得10
19秒前
anna1992完成签到 ,获得积分10
21秒前
我是老大应助眼睛大书兰采纳,获得10
21秒前
21秒前
田様应助漂亮蘑菇采纳,获得10
21秒前
21秒前
大漂亮完成签到,获得积分10
22秒前
24秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465294
求助须知:如何正确求助?哪些是违规求助? 3058502
关于积分的说明 9061803
捐赠科研通 2748782
什么是DOI,文献DOI怎么找? 1508120
科研通“疑难数据库(出版商)”最低求助积分说明 696806
邀请新用户注册赠送积分活动 696467