Unsupervised missing information reconstruction for single remote sensing image with Deep Code Regression

编码(集合论) 回归 地理 人工智能 图像(数学) 计算机科学 地图学 缺少数据 回归分析 遥感 模式识别(心理学) 数据挖掘 统计 数学 机器学习 程序设计语言 集合(抽象数据类型)
作者
Jianhao Gao,Qiangqiang Yuan,Jie Li,Xin Su
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:105: 102599-102599 被引量:4
标识
DOI:10.1016/j.jag.2021.102599
摘要

• We propose Deep Code Regression to reconstruct gaps in remote sensing images. • The method can directly operate on the target in an unsupervised manner. • The method can deal with various kinds of gaps in a unified framework. Remote sensing images have been applied to many aspects in Earth observation work. However, tons of optical remote sensing images are abandoned due to the information loss caused by the clouds and damage of sensing instruments. Recently, many deep learning methods have been proposed to reconstruct the missing information of remote sensing images but they will be non-effective when it comes to the condition where there is no training dataset. In this paper, we propose an unsupervised method which can reconstruct single remote sensing image without training datasets in a deep neural network. The main idea is to process a reference image of the corrupted image with a deep self-regression network and extract the internal map, which possesses the same spatial information as the reference image. The residual information of the corrupted image is used to constrain the spectral authority of internal map to obtain the reconstruction results. We apply the proposed method in three conditions: 1) dead pixel reconstruction, 2) multitemporal reconstruction and 3) heterogeneous data reconstruction. We conduct simulation experiments and real data experiments in three conditions to confirm the superiority of our methods. The results show that the proposed method outperforms some state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速向日葵完成签到,获得积分20
刚刚
jc完成签到,获得积分10
1秒前
科研通AI2S应助直率的问筠采纳,获得10
1秒前
1秒前
研狗发布了新的文献求助20
1秒前
1秒前
2秒前
2秒前
就这样完成签到,获得积分10
2秒前
曲奇饼干完成签到 ,获得积分10
2秒前
小确幸发布了新的文献求助20
2秒前
2秒前
刘华银发布了新的文献求助10
2秒前
超级尔白发布了新的文献求助10
3秒前
爱学习的Audrey完成签到,获得积分10
3秒前
椰奶西瓜完成签到,获得积分10
3秒前
ding应助louyu采纳,获得10
3秒前
3秒前
xkkk完成签到,获得积分10
4秒前
4秒前
缓慢钢笔发布了新的文献求助10
4秒前
wanghao4799发布了新的文献求助10
4秒前
wanci应助迅速向日葵采纳,获得10
4秒前
4秒前
顺顺黎黎完成签到,获得积分10
4秒前
5秒前
欢呼鼠标发布了新的文献求助50
5秒前
5秒前
5秒前
jasontian1990完成签到,获得积分10
6秒前
妳咔咔发布了新的文献求助10
6秒前
6秒前
小T儿发布了新的文献求助10
6秒前
alicealike发布了新的文献求助10
6秒前
123发布了新的文献求助10
7秒前
小马甲应助海带采纳,获得20
7秒前
wear88发布了新的文献求助10
7秒前
智智发布了新的文献求助10
8秒前
8秒前
斯文败类应助水水采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505946
求助须知:如何正确求助?哪些是违规求助? 4601465
关于积分的说明 14476523
捐赠科研通 4535397
什么是DOI,文献DOI怎么找? 2485351
邀请新用户注册赠送积分活动 1468337
关于科研通互助平台的介绍 1440869