Unsupervised missing information reconstruction for single remote sensing image with Deep Code Regression

编码(集合论) 回归 地理 人工智能 图像(数学) 计算机科学 地图学 缺少数据 回归分析 遥感 模式识别(心理学) 数据挖掘 统计 数学 机器学习 程序设计语言 集合(抽象数据类型)
作者
Jianhao Gao,Qiangqiang Yuan,Jie Li,Xin Su
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:105: 102599-102599 被引量:4
标识
DOI:10.1016/j.jag.2021.102599
摘要

• We propose Deep Code Regression to reconstruct gaps in remote sensing images. • The method can directly operate on the target in an unsupervised manner. • The method can deal with various kinds of gaps in a unified framework. Remote sensing images have been applied to many aspects in Earth observation work. However, tons of optical remote sensing images are abandoned due to the information loss caused by the clouds and damage of sensing instruments. Recently, many deep learning methods have been proposed to reconstruct the missing information of remote sensing images but they will be non-effective when it comes to the condition where there is no training dataset. In this paper, we propose an unsupervised method which can reconstruct single remote sensing image without training datasets in a deep neural network. The main idea is to process a reference image of the corrupted image with a deep self-regression network and extract the internal map, which possesses the same spatial information as the reference image. The residual information of the corrupted image is used to constrain the spectral authority of internal map to obtain the reconstruction results. We apply the proposed method in three conditions: 1) dead pixel reconstruction, 2) multitemporal reconstruction and 3) heterogeneous data reconstruction. We conduct simulation experiments and real data experiments in three conditions to confirm the superiority of our methods. The results show that the proposed method outperforms some state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
刚刚
chen发布了新的文献求助10
刚刚
茹茹发布了新的文献求助10
刚刚
xh96完成签到,获得积分10
刚刚
微笑雁风完成签到,获得积分20
1秒前
1秒前
1秒前
秦长春完成签到,获得积分20
1秒前
光电发布了新的文献求助10
2秒前
烟花应助张yang采纳,获得10
3秒前
3秒前
3秒前
3秒前
踏实十三完成签到,获得积分10
4秒前
超级翠应助wanghao采纳,获得10
4秒前
eraygt完成签到,获得积分10
4秒前
4秒前
认真的奇异果完成签到 ,获得积分10
4秒前
4秒前
小木关注了科研通微信公众号
4秒前
祺屿梦完成签到,获得积分10
5秒前
yangts2021发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
张伟发布了新的文献求助10
6秒前
6秒前
6秒前
CodeCraft应助杨媛采纳,获得10
7秒前
SciGPT应助liqianniu采纳,获得10
7秒前
8秒前
zzz发布了新的文献求助10
8秒前
DI完成签到,获得积分10
8秒前
罗莹完成签到,获得积分10
9秒前
情怀应助棒棒的红红采纳,获得10
9秒前
9秒前
serendipity发布了新的文献求助10
10秒前
cwy发布了新的文献求助10
10秒前
Novice6354完成签到 ,获得积分10
10秒前
大个应助单薄的夜阑采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482