A Spatio-Temporal Attention-Based Model for Infant Movement Assessment From Videos

可解释性 人工智能 计算机科学 判别式 运动评估 脑瘫 计算机视觉 机器学习 模式识别(心理学) 物理医学与康复 心理学 神经科学 医学 运动技能
作者
Binh Nguyen-Thai,Vuong Le,Catherine Morgan,Nadia Badawi,Truyen Tran,Svetha Venkatesh
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 3911-3920 被引量:24
标识
DOI:10.1109/jbhi.2021.3077957
摘要

The absence or abnormality of fidgety movements of joints or limbs is strongly indicative of cerebral palsy in infants. Developing computer-based methods for assessing infant movements in videos is pivotal for improved cerebral palsy screening. Most existing methods use appearance-based features and are thus sensitive to strong but irrelevant signals caused by background clutter or a moving camera. Moreover, these features are computed over the whole frame, thus they measure gross whole body movements rather than specific joint/limb motion. Addressing these challenges, we develop and validate a new method for fidgety movement assessment from consumer-grade videos using human poses extracted from short clips. Human poses capture only relevant motion profiles of joints and limbs and are thus free from irrelevant appearance artifacts. The dynamics and coordination between joints are modeled using spatio-temporal graph convolutional networks. Frames and body parts that contain discriminative information about fidgety movements are selected through a spatio-temporal attention mechanism. We validate the proposed model on the cerebral palsy screening task using a real-life consumer-grade video dataset collected at an Australian hospital through the Cerebral Palsy Alliance, Australia. Our experiments show that the proposed method achieves the ROC-AUC score of 81.87%, significantly outperforming existing competing methods with better interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助科研通管家采纳,获得10
刚刚
刚刚
张子捷发布了新的文献求助10
刚刚
ding应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
1秒前
爆米花应助量子星尘采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
Akim应助科研通管家采纳,获得10
1秒前
小二郎应助量子星尘采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
1秒前
ding应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
万能图书馆应助量子星尘采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
大个应助科研通管家采纳,获得10
1秒前
广州队发布了新的文献求助10
1秒前
赘婿应助量子星尘采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
丸子圆圆应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
NexusExplorer应助量子星尘采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
丸子圆圆应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
HOAN应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
CipherSage应助量子星尘采纳,获得10
2秒前
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Superabsorbent Polymers 2025 800
Rwandan diaspora online: Social connections and identity narratives 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805195
求助须知:如何正确求助?哪些是违规求助? 5848012
关于积分的说明 15515402
捐赠科研通 4930468
什么是DOI,文献DOI怎么找? 2654642
邀请新用户注册赠送积分活动 1601437
关于科研通互助平台的介绍 1556419