已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Highly accurate real-time decomposition of single channel intramuscular EMG

计算机科学 接口 肌电图 估计员 算法 模式识别(心理学) 人工智能 数学 统计 计算机硬件 心理学 精神科
作者
Tianyi Yu,Konstantin Akhmadeev,Eric Le Carpentier,Yannick Aoustin,Dario Farina
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (2): 746-757 被引量:2
标识
DOI:10.1109/tbme.2021.3104621
摘要

Real-time intramuscular electromyography (iEMG) decomposition, as an identification procedure of individual motor neuron (MN) discharge timings from a streaming iEMG recording, has the potential to be used in human-machine interfacing. However, for these applications, the decomposition accuracy and speed of current approaches need to be improved.In our previous work, a real-time decomposition algorithm based on a Hidden Markov Model of EMG, using GPU-implemented Bayesian filter to estimate the spike trains of motor units (MU) and their action potentials (MUAPs), was proposed. In this paper, a substantially extended version of this algorithm that boosts the accuracy while maintaining real-time implementation, is introduced. Specifically, multiple heuristics that aim at resolving the problems leading to performance degradation, are applied to the original model. In addition, the recursive maximum likelihood (RML) estimator previously used to estimate the statistical parameters of the spike trains, is replaced by a linear regression (LR) estimator, which is computationally more efficient, in order to ensure real-time decomposition with the new heuristics.The algorithm was validated using twenty-one experimental iEMG signals acquired from the tibialis anterior muscle of five subjects by fine wire electrodes. All signals were decomposed in real time. The decomposition accuracy depended on the level of muscle activation and was when less than 10 MUs were identified, substantially exceeding previous real-time results.Single channel iEMG signals can be very accurately decomposed in real time with the proposed algorithm.The proposed highly accurate algorithm for single-channel iEMG decomposition has the potential of providing neural information on motor tasks for human interfacing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小木安华完成签到,获得积分20
1秒前
1秒前
田様应助露露采纳,获得10
3秒前
谦让寒云完成签到 ,获得积分10
3秒前
还单身的尔琴完成签到,获得积分10
4秒前
momo发布了新的文献求助10
4秒前
6秒前
大个应助orange9采纳,获得10
6秒前
ZXW完成签到,获得积分10
6秒前
6秒前
大模型应助姚裕采纳,获得10
7秒前
kyt完成签到,获得积分10
9秒前
酆辉平同学完成签到,获得积分10
11秒前
小幅上调发布了新的文献求助10
12秒前
wangjue发布了新的文献求助10
13秒前
15秒前
15秒前
CipherSage应助小木安华采纳,获得10
15秒前
shi完成签到,获得积分10
16秒前
17秒前
善学以致用应助Cherry采纳,获得10
17秒前
我是老大应助yaling采纳,获得10
19秒前
orange9发布了新的文献求助10
19秒前
19秒前
ling完成签到,获得积分20
21秒前
姚裕发布了新的文献求助10
22秒前
wkjfh举报杜仲文求助涉嫌违规
24秒前
miles发布了新的文献求助10
24秒前
24秒前
伊笙完成签到 ,获得积分10
27秒前
28秒前
29秒前
姚裕完成签到,获得积分10
31秒前
默客发布了新的文献求助10
33秒前
无花果应助cf2v采纳,获得10
36秒前
玥落玖阡柒完成签到 ,获得积分10
41秒前
默客完成签到,获得积分10
43秒前
44秒前
44秒前
peanut发布了新的文献求助10
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989832
求助须知:如何正确求助?哪些是违规求助? 3531967
关于积分的说明 11255613
捐赠科研通 3270725
什么是DOI,文献DOI怎么找? 1805035
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809208