Highly accurate real-time decomposition of single channel intramuscular EMG

计算机科学 接口 肌电图 估计员 算法 模式识别(心理学) 人工智能 数学 统计 计算机硬件 心理学 精神科
作者
Tianyi Yu,Konstantin Akhmadeev,Eric Le Carpentier,Yannick Aoustin,Dario Farina
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (2): 746-757 被引量:2
标识
DOI:10.1109/tbme.2021.3104621
摘要

Real-time intramuscular electromyography (iEMG) decomposition, as an identification procedure of individual motor neuron (MN) discharge timings from a streaming iEMG recording, has the potential to be used in human-machine interfacing. However, for these applications, the decomposition accuracy and speed of current approaches need to be improved.In our previous work, a real-time decomposition algorithm based on a Hidden Markov Model of EMG, using GPU-implemented Bayesian filter to estimate the spike trains of motor units (MU) and their action potentials (MUAPs), was proposed. In this paper, a substantially extended version of this algorithm that boosts the accuracy while maintaining real-time implementation, is introduced. Specifically, multiple heuristics that aim at resolving the problems leading to performance degradation, are applied to the original model. In addition, the recursive maximum likelihood (RML) estimator previously used to estimate the statistical parameters of the spike trains, is replaced by a linear regression (LR) estimator, which is computationally more efficient, in order to ensure real-time decomposition with the new heuristics.The algorithm was validated using twenty-one experimental iEMG signals acquired from the tibialis anterior muscle of five subjects by fine wire electrodes. All signals were decomposed in real time. The decomposition accuracy depended on the level of muscle activation and was when less than 10 MUs were identified, substantially exceeding previous real-time results.Single channel iEMG signals can be very accurately decomposed in real time with the proposed algorithm.The proposed highly accurate algorithm for single-channel iEMG decomposition has the potential of providing neural information on motor tasks for human interfacing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
万能图书馆应助zz123采纳,获得10
1秒前
杜康完成签到,获得积分10
1秒前
Cheung2121发布了新的文献求助10
1秒前
医学小王完成签到 ,获得积分10
2秒前
4秒前
刘涵完成签到 ,获得积分10
5秒前
帅气的沧海完成签到 ,获得积分10
6秒前
辣辣辣辣辣辣完成签到 ,获得积分10
9秒前
10秒前
13秒前
乐观半兰完成签到,获得积分10
15秒前
15秒前
小丸子和zz完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
江雁完成签到,获得积分10
17秒前
坚定芯完成签到,获得积分10
17秒前
叶子兮完成签到,获得积分10
19秒前
幽默的妍完成签到 ,获得积分10
19秒前
Snow完成签到 ,获得积分10
19秒前
19秒前
liuyuh完成签到,获得积分10
20秒前
悠明夜月完成签到 ,获得积分10
21秒前
乌云乌云快走开完成签到,获得积分10
21秒前
你是我的唯一完成签到 ,获得积分10
21秒前
洁白的故人完成签到 ,获得积分10
23秒前
乐观半兰发布了新的文献求助10
23秒前
water应助科研通管家采纳,获得10
24秒前
zhang完成签到 ,获得积分10
24秒前
water应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
orixero应助科研通管家采纳,获得10
24秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
大模型应助科研通管家采纳,获得10
24秒前
24秒前
鲲鹏完成签到 ,获得积分10
25秒前
大气建辉完成签到 ,获得积分10
25秒前
尛森完成签到,获得积分10
25秒前
机灵枕头完成签到 ,获得积分10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022