Highly accurate real-time decomposition of single channel intramuscular EMG

计算机科学 接口 肌电图 估计员 算法 模式识别(心理学) 人工智能 数学 统计 计算机硬件 心理学 精神科
作者
Tianyi Yu,Konstantin Akhmadeev,Eric Le Carpentier,Yannick Aoustin,Dario Farina
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (2): 746-757 被引量:2
标识
DOI:10.1109/tbme.2021.3104621
摘要

Real-time intramuscular electromyography (iEMG) decomposition, as an identification procedure of individual motor neuron (MN) discharge timings from a streaming iEMG recording, has the potential to be used in human-machine interfacing. However, for these applications, the decomposition accuracy and speed of current approaches need to be improved.In our previous work, a real-time decomposition algorithm based on a Hidden Markov Model of EMG, using GPU-implemented Bayesian filter to estimate the spike trains of motor units (MU) and their action potentials (MUAPs), was proposed. In this paper, a substantially extended version of this algorithm that boosts the accuracy while maintaining real-time implementation, is introduced. Specifically, multiple heuristics that aim at resolving the problems leading to performance degradation, are applied to the original model. In addition, the recursive maximum likelihood (RML) estimator previously used to estimate the statistical parameters of the spike trains, is replaced by a linear regression (LR) estimator, which is computationally more efficient, in order to ensure real-time decomposition with the new heuristics.The algorithm was validated using twenty-one experimental iEMG signals acquired from the tibialis anterior muscle of five subjects by fine wire electrodes. All signals were decomposed in real time. The decomposition accuracy depended on the level of muscle activation and was when less than 10 MUs were identified, substantially exceeding previous real-time results.Single channel iEMG signals can be very accurately decomposed in real time with the proposed algorithm.The proposed highly accurate algorithm for single-channel iEMG decomposition has the potential of providing neural information on motor tasks for human interfacing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
胖虎啊完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
Lawgh发布了新的文献求助10
3秒前
飞上草发布了新的文献求助10
3秒前
奋斗的萝发布了新的文献求助10
4秒前
药学小男孩完成签到,获得积分10
5秒前
kekeke完成签到,获得积分10
5秒前
粥喝不喝发布了新的文献求助10
5秒前
5秒前
7秒前
羊羊羊完成签到,获得积分10
7秒前
潦草发布了新的文献求助10
7秒前
yunjuan完成签到,获得积分10
7秒前
hwb完成签到 ,获得积分10
8秒前
8秒前
emo完成签到,获得积分10
8秒前
8秒前
10秒前
siccy完成签到 ,获得积分10
11秒前
Worenxian完成签到,获得积分10
11秒前
飞上草完成签到,获得积分10
12秒前
可爱的函函应助Renhong采纳,获得10
12秒前
12秒前
ayu发布了新的文献求助10
13秒前
科研小趴菜完成签到,获得积分10
13秒前
成就的山水完成签到,获得积分10
13秒前
英俊的铭应助guugen采纳,获得10
13秒前
科目三应助visible采纳,获得10
14秒前
酷炫依凝完成签到,获得积分10
14秒前
Eason发布了新的文献求助10
14秒前
bloomjjj发布了新的文献求助10
14秒前
orixero应助羊羊羊采纳,获得10
15秒前
15秒前
15秒前
16秒前
16秒前
互助遵法尚德应助潦草采纳,获得10
17秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147820
求助须知:如何正确求助?哪些是违规求助? 2798873
关于积分的说明 7832037
捐赠科研通 2455841
什么是DOI,文献DOI怎么找? 1306979
科研通“疑难数据库(出版商)”最低求助积分说明 627957
版权声明 601587