Highly accurate real-time decomposition of single channel intramuscular EMG

计算机科学 接口 肌电图 估计员 算法 模式识别(心理学) 人工智能 数学 统计 计算机硬件 心理学 精神科
作者
Tianyi Yu,Konstantin Akhmadeev,Eric Le Carpentier,Yannick Aoustin,Dario Farina
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (2): 746-757 被引量:2
标识
DOI:10.1109/tbme.2021.3104621
摘要

Real-time intramuscular electromyography (iEMG) decomposition, as an identification procedure of individual motor neuron (MN) discharge timings from a streaming iEMG recording, has the potential to be used in human-machine interfacing. However, for these applications, the decomposition accuracy and speed of current approaches need to be improved.In our previous work, a real-time decomposition algorithm based on a Hidden Markov Model of EMG, using GPU-implemented Bayesian filter to estimate the spike trains of motor units (MU) and their action potentials (MUAPs), was proposed. In this paper, a substantially extended version of this algorithm that boosts the accuracy while maintaining real-time implementation, is introduced. Specifically, multiple heuristics that aim at resolving the problems leading to performance degradation, are applied to the original model. In addition, the recursive maximum likelihood (RML) estimator previously used to estimate the statistical parameters of the spike trains, is replaced by a linear regression (LR) estimator, which is computationally more efficient, in order to ensure real-time decomposition with the new heuristics.The algorithm was validated using twenty-one experimental iEMG signals acquired from the tibialis anterior muscle of five subjects by fine wire electrodes. All signals were decomposed in real time. The decomposition accuracy depended on the level of muscle activation and was when less than 10 MUs were identified, substantially exceeding previous real-time results.Single channel iEMG signals can be very accurately decomposed in real time with the proposed algorithm.The proposed highly accurate algorithm for single-channel iEMG decomposition has the potential of providing neural information on motor tasks for human interfacing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花城完成签到,获得积分10
刚刚
刚刚
hzzzz完成签到,获得积分10
刚刚
bkagyin应助李萍萍采纳,获得10
1秒前
求助人员发布了新的文献求助10
1秒前
1秒前
2秒前
一杯奶茶完成签到,获得积分10
2秒前
00发布了新的文献求助10
2秒前
我的发布了新的文献求助10
2秒前
ddd完成签到 ,获得积分10
2秒前
2秒前
研友_VZG7GZ应助安详的绿竹采纳,获得10
3秒前
领投的虎发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
123456发布了新的文献求助10
4秒前
开心的凝荷完成签到,获得积分10
5秒前
从不使用膨胀券完成签到,获得积分10
6秒前
111111完成签到,获得积分10
6秒前
黑色卡布奇诺完成签到,获得积分10
6秒前
6秒前
rrfhl完成签到,获得积分10
7秒前
wind发布了新的文献求助10
7秒前
7秒前
小章发布了新的文献求助10
8秒前
8秒前
111完成签到 ,获得积分10
8秒前
舒适的灵煌完成签到,获得积分20
9秒前
9秒前
李萍萍完成签到,获得积分10
9秒前
脑洞疼应助小新同学采纳,获得10
11秒前
xx发布了新的文献求助10
11秒前
王小雨发布了新的文献求助10
12秒前
hhh关闭了hhh文献求助
12秒前
JHK发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727744
求助须知:如何正确求助?哪些是违规求助? 5309981
关于积分的说明 15312237
捐赠科研通 4875187
什么是DOI,文献DOI怎么找? 2618600
邀请新用户注册赠送积分活动 1568248
关于科研通互助平台的介绍 1524927