Surrogate modeling of elasto-plastic problems via long short-term memory neural networks and proper orthogonal decomposition

替代模型 人工神经网络 计算机科学 替代数据 比例(比率) 算法 维数(图论) 可塑性 冯·米塞斯屈服准则 自由度(物理和化学) 非线性系统 人工智能 有限元法 数学 机器学习 结构工程 工程类 材料科学 物理 量子力学 纯数学 复合材料
作者
Sun-Young Im,Jonggeon Lee,Maenghyo Cho
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:385: 114030-114030 被引量:52
标识
DOI:10.1016/j.cma.2021.114030
摘要

Because of its nonlinearity and path-dependency, analysis of the elasto-plastic behavior of the finite element (FE) model is computationally expensive. By directly learning sequential data, modeling plasticity via deep learning has shown successful performance in immediately predicting the path-dependent response. However, large-scale elasto-plastic FE models still have challenges in that they require numerous degrees of freedom and are accompanied by high-dimensional data. This study proposes a practical framework for the surrogate modeling of a large-scale elasto-plastic FE model by combining long short-term memory (LSTM) neural networks with proper orthogonal decomposition (POD). First, displacement, plastic strain magnitude, and von Mises stress are generated using commercial FE analysis software, and then, the high-dimensional data are reduced to low-dimensional POD coefficient data before being used for training. With the drastically reduced data, a neural network architecture can be introduced in the form of individual and ensemble structures to achieve accurate and robust prediction. As the proposed POD-LSTM surrogate model operates on the structural level, POD-LSTM surrogate models are constructed and implemented for each of the three large-scale elasto-plastic FE models. In all three examples, the proposed POD-LSTM surrogate models were found to be efficient and accurate for predicting elasto-plastic responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
情怀应助shimmer.采纳,获得10
1秒前
2秒前
3秒前
3秒前
Saturn完成签到,获得积分10
3秒前
QW111发布了新的文献求助10
3秒前
飞快的孱发布了新的文献求助10
3秒前
曲奇发布了新的文献求助30
5秒前
会飞的猪发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
务实的鞯完成签到,获得积分10
8秒前
科研通AI6应助yy采纳,获得10
8秒前
8秒前
要减肥的镜子完成签到,获得积分10
9秒前
10秒前
FlipFlops完成签到,获得积分10
11秒前
11秒前
蓝天应助阿尔文采纳,获得10
11秒前
生动梦松应助科研通管家采纳,获得10
11秒前
不安冷风应助科研通管家采纳,获得10
12秒前
fifteen应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
鸣笛应助科研通管家采纳,获得30
12秒前
ricky应助科研通管家采纳,获得10
12秒前
不安冷风应助科研通管家采纳,获得10
12秒前
卤鸡腿应助科研通管家采纳,获得20
12秒前
Akim应助科研通管家采纳,获得10
13秒前
13秒前
无花果应助科研通管家采纳,获得10
13秒前
不想干活应助科研通管家采纳,获得10
13秒前
不安冷风应助科研通管家采纳,获得10
13秒前
生动梦松应助科研通管家采纳,获得10
13秒前
不想干活应助科研通管家采纳,获得10
13秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888