Surrogate modeling of elasto-plastic problems via long short-term memory neural networks and proper orthogonal decomposition

替代模型 人工神经网络 计算机科学 替代数据 比例(比率) 算法 维数(图论) 可塑性 冯·米塞斯屈服准则 自由度(物理和化学) 非线性系统 人工智能 有限元法 数学 机器学习 结构工程 工程类 材料科学 物理 量子力学 复合材料 纯数学
作者
Sun-Young Im,Jonggeon Lee,Maenghyo Cho
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:385: 114030-114030 被引量:52
标识
DOI:10.1016/j.cma.2021.114030
摘要

Because of its nonlinearity and path-dependency, analysis of the elasto-plastic behavior of the finite element (FE) model is computationally expensive. By directly learning sequential data, modeling plasticity via deep learning has shown successful performance in immediately predicting the path-dependent response. However, large-scale elasto-plastic FE models still have challenges in that they require numerous degrees of freedom and are accompanied by high-dimensional data. This study proposes a practical framework for the surrogate modeling of a large-scale elasto-plastic FE model by combining long short-term memory (LSTM) neural networks with proper orthogonal decomposition (POD). First, displacement, plastic strain magnitude, and von Mises stress are generated using commercial FE analysis software, and then, the high-dimensional data are reduced to low-dimensional POD coefficient data before being used for training. With the drastically reduced data, a neural network architecture can be introduced in the form of individual and ensemble structures to achieve accurate and robust prediction. As the proposed POD-LSTM surrogate model operates on the structural level, POD-LSTM surrogate models are constructed and implemented for each of the three large-scale elasto-plastic FE models. In all three examples, the proposed POD-LSTM surrogate models were found to be efficient and accurate for predicting elasto-plastic responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助S1mple_gentleman采纳,获得10
刚刚
科研通AI5应助CC采纳,获得10
刚刚
刚刚
1秒前
1秒前
张静静完成签到,获得积分10
2秒前
2秒前
震666发布了新的文献求助30
2秒前
MADKAI发布了新的文献求助10
2秒前
2秒前
117发布了新的文献求助10
2秒前
3秒前
3秒前
酶没美镁完成签到,获得积分10
3秒前
小二郎应助Rui采纳,获得10
3秒前
Libra完成签到,获得积分10
4秒前
雪儿发布了新的文献求助30
4秒前
无悔呀发布了新的文献求助10
4秒前
小巧的可仁完成签到 ,获得积分10
4秒前
4秒前
zhao完成签到,获得积分10
5秒前
masu发布了新的文献求助10
5秒前
冷酷尔琴发布了新的文献求助10
6秒前
Ll发布了新的文献求助10
6秒前
优雅山柏完成签到,获得积分10
6秒前
XinyiZhang发布了新的文献求助10
6秒前
小蘑菇应助yangyang采纳,获得10
6秒前
慕青应助欢欢采纳,获得10
7秒前
小憩完成签到,获得积分10
7秒前
南乔发布了新的文献求助10
7秒前
张静静发布了新的文献求助10
8秒前
云儿完成签到,获得积分10
8秒前
淡淡的洋葱完成签到,获得积分10
8秒前
小洲王先生完成签到,获得积分10
9秒前
9秒前
dd完成签到,获得积分10
9秒前
9秒前
10秒前
CCL应助kk2024采纳,获得50
10秒前
wjs0406完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740