亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Surrogate modeling of elasto-plastic problems via long short-term memory neural networks and proper orthogonal decomposition

替代模型 人工神经网络 计算机科学 替代数据 比例(比率) 算法 维数(图论) 可塑性 冯·米塞斯屈服准则 自由度(物理和化学) 非线性系统 人工智能 有限元法 数学 机器学习 结构工程 工程类 材料科学 物理 量子力学 复合材料 纯数学
作者
Sun-Young Im,Jonggeon Lee,Maenghyo Cho
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:385: 114030-114030 被引量:52
标识
DOI:10.1016/j.cma.2021.114030
摘要

Because of its nonlinearity and path-dependency, analysis of the elasto-plastic behavior of the finite element (FE) model is computationally expensive. By directly learning sequential data, modeling plasticity via deep learning has shown successful performance in immediately predicting the path-dependent response. However, large-scale elasto-plastic FE models still have challenges in that they require numerous degrees of freedom and are accompanied by high-dimensional data. This study proposes a practical framework for the surrogate modeling of a large-scale elasto-plastic FE model by combining long short-term memory (LSTM) neural networks with proper orthogonal decomposition (POD). First, displacement, plastic strain magnitude, and von Mises stress are generated using commercial FE analysis software, and then, the high-dimensional data are reduced to low-dimensional POD coefficient data before being used for training. With the drastically reduced data, a neural network architecture can be introduced in the form of individual and ensemble structures to achieve accurate and robust prediction. As the proposed POD-LSTM surrogate model operates on the structural level, POD-LSTM surrogate models are constructed and implemented for each of the three large-scale elasto-plastic FE models. In all three examples, the proposed POD-LSTM surrogate models were found to be efficient and accurate for predicting elasto-plastic responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Antares完成签到,获得积分10
7秒前
Owen应助顺利甜瓜采纳,获得10
34秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
大胆菲音发布了新的文献求助30
2分钟前
科目三应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研蓝月发布了新的文献求助150
5分钟前
5分钟前
科研蓝月完成签到,获得积分10
5分钟前
5分钟前
我亦化身东海去完成签到,获得积分10
5分钟前
打打应助我亦化身东海去采纳,获得10
5分钟前
pursu发布了新的文献求助10
5分钟前
愉快的犀牛完成签到 ,获得积分10
5分钟前
Dengjia完成签到,获得积分20
5分钟前
Weiyu完成签到 ,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
TXZ06完成签到,获得积分10
7分钟前
kuoping完成签到,获得积分0
7分钟前
五五完成签到 ,获得积分10
8分钟前
9分钟前
共享精神应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
顺利甜瓜发布了新的文献求助10
9分钟前
鲤鱼山人完成签到 ,获得积分10
9分钟前
顺利甜瓜完成签到,获得积分10
9分钟前
张来完成签到 ,获得积分10
9分钟前
洒脱完成签到,获得积分10
10分钟前
AA完成签到 ,获得积分10
10分钟前
10分钟前
陈宇发布了新的文献求助10
10分钟前
orixero应助陈宇采纳,获得10
10分钟前
陈宇完成签到,获得积分10
10分钟前
duan完成签到 ,获得积分10
10分钟前
点点完成签到 ,获得积分10
11分钟前
科研通AI6应助科研通管家采纳,获得10
11分钟前
12分钟前
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357315
求助须知:如何正确求助?哪些是违规求助? 4488736
关于积分的说明 13972488
捐赠科研通 4389979
什么是DOI,文献DOI怎么找? 2411784
邀请新用户注册赠送积分活动 1404374
关于科研通互助平台的介绍 1378621