鉴别器
人工智能
计算机科学
图像(数学)
发电机(电路理论)
残余物
亮度
模式识别(心理学)
计算机视觉
图像质量
卷积神经网络
相似性(几何)
失真(音乐)
生成对抗网络
干扰(通信)
算法
光学
物理
频道(广播)
探测器
功率(物理)
放大器
带宽(计算)
电信
量子力学
计算机网络
作者
LI Hua-ji,Jianghua Cheng,Tong Liu,Bang Cheng,Zilong Liu
出处
期刊:Journal of physics
[IOP Publishing]
日期:2021-09-01
卷期号:2035 (1): 012027-012027
标识
DOI:10.1088/1742-6596/2035/1/012027
摘要
We present an end-to-end low-light image enhancement learning method. This learning is based on the conditional generative adversarial networks(GAN) and realizes low-light images enhancement. Specifically, our method uses a convolutional neural network containing residual structures as a generator and WGAN-GP as a discriminator to generate an effective low-light enhancement model under the constraints of GAN loss, Perceptual loss and Structural similarity loss. The model can retain the detailed information of the original image, improve the brightness of the image without generating noise interference, while the generated images are more natural and have higher quality. Extensive experimental results show that our method has reached the state-of-art in multiple objective evaluation indicators of image quality, and the visual appearance is superior.
科研通智能强力驱动
Strongly Powered by AbleSci AI