The Value of Predicting Human Epidermal Growth Factor Receptor 2 Status in Adenocarcinoma of the Esophagogastric Junction on CT-Based Radiomics Nomogram

无线电技术 列线图 医学 队列 内科学 肿瘤科 接收机工作特性 Lasso(编程语言) 一致性 放射科 腺癌 表皮生长因子受体 曲线下面积 多元分析 比例危险模型 相关性 癌症 逻辑回归 回顾性队列研究 生物标志物 危险系数 计算机科学 万维网
作者
Shuxing Wang,Yiqing Chen,Han Zhang,Zhanhua Liang,Jun Bu
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:11 被引量:8
标识
DOI:10.3389/fonc.2021.707686
摘要

We developed and validated a CT-based radiomics nomogram to predict HER2 status in patients with adenocarcinoma of esophagogastric junction (AEG).A total of 101 patients with HER2-positive (n=46) and HER2-negative (n=55) esophagogastric junction adenocarcinoma (AEG) were retrospectively analyzed. They were then randomly divided into a training cohort (n=70) and a verification cohort (n=31). The radiomics features were obtained from the portal phase of the CT enhanced scan. We used the least absolute shrinkage and selection operator (LASSO) logistic regression method to select the best radiomics features in the training cohort, combined them linearly, and used the radiomics signature formula to calculate the radiomics score (Rad-score) of each AEG patient. A multivariable logistic regression method was applied to develop a prediction model that incorporated the radiomics signature and independent risk predictors. The prediction performance of the nomogram was evaluated using the training and validation cohorts.In the training (P<0.001) and verification groups (P<0.001), the radiomics signature combined with seven radiomics features was significantly correlated with HER2 status. The nomogram composed of CT-reported T stage and radiomics signature showed very good predictive performance for HER2 status. The area under the curve (AUC) of the training cohort was 0.946 (95% CI: 0.919-0.973), and that of the validation group was 0.903 (95% CI: 0.847-0.959). The calibration curve of the radiomics nomogram showed a good degree of calibration. Decision-curve analysis revealed that the radiomics nomogram was useful.The nomogram CT-based radiomics signature combined with CT-reported T stage can better predict the HER2 status of AEG before surgery. It can be used as a non-invasive prediction tool for HER2 status and is expected to guide clinical treatment decisions in clinical practice, and it can assist in the formulation of individualized treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc完成签到 ,获得积分10
1秒前
2秒前
大饼哥完成签到,获得积分10
2秒前
TYSinger完成签到,获得积分10
2秒前
瘦瘦牛排完成签到 ,获得积分10
3秒前
明天好完成签到,获得积分10
4秒前
郑旭辉完成签到,获得积分10
4秒前
7秒前
7秒前
7秒前
7秒前
dyh0521发布了新的文献求助10
8秒前
zhangwansen完成签到,获得积分20
9秒前
翊嘉完成签到 ,获得积分10
9秒前
9秒前
10秒前
Liuuuu发布了新的文献求助10
11秒前
zhangwansen发布了新的文献求助10
11秒前
12秒前
Hello应助Mr_X采纳,获得10
12秒前
美满的水卉完成签到,获得积分10
13秒前
林知鲸落发布了新的文献求助10
13秒前
Dream完成签到,获得积分10
14秒前
15秒前
吃的饭广泛完成签到,获得积分10
15秒前
17秒前
Sally完成签到,获得积分10
18秒前
JACK发布了新的文献求助10
19秒前
20秒前
23秒前
gege发布了新的文献求助10
24秒前
24秒前
hiipaige完成签到,获得积分10
25秒前
juile发布了新的文献求助10
26秒前
七七发布了新的文献求助30
26秒前
聪明的凝安完成签到,获得积分10
27秒前
椿·发布了新的文献求助10
28秒前
28秒前
huilini发布了新的文献求助10
29秒前
ldh032应助笑面客采纳,获得10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
中国化工新材料产业发展报告(2024年) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3762952
求助须知:如何正确求助?哪些是违规求助? 3307438
关于积分的说明 10139872
捐赠科研通 3022587
什么是DOI,文献DOI怎么找? 1659152
邀请新用户注册赠送积分活动 792378
科研通“疑难数据库(出版商)”最低求助积分说明 754957