跨膜结构域
跨膜蛋白
刺猬
化学
刺猬信号通路
焊剂(冶金)
生物物理学
修补
生物
生物化学
氨基酸
信号转导
受体
有机化学
作者
Qianqian Wang,Daniel Asarnow,Ke Ding,Randall K. Mann,Jason Hatakeyama,Yunxiao Zhang,Yonghui Ma,Yifan Cheng,Philip A. Beachy
出处
期刊:Nature
[Springer Nature]
日期:2021-10-27
卷期号:599 (7884): 320-324
被引量:16
标识
DOI:10.1038/s41586-021-03996-0
摘要
The Dispatched protein, which is related to the NPC1 and PTCH1 cholesterol transporters1,2 and to H+-driven transporters of the RND family3,4, enables tissue-patterning activity of the lipid-modified Hedgehog protein by releasing it from tightly -localized sites of embryonic expression5-10. Here we determine a cryo-electron microscopy structure of the mouse protein Dispatched homologue 1 (DISP1), revealing three Na+ ions coordinated within a channel that traverses its transmembrane domain. We find that the rate of Hedgehog export is dependent on the Na+ gradient across the plasma membrane. The transmembrane channel and Na+ binding are disrupted in DISP1-NNN, a variant with asparagine substitutions for three intramembrane aspartate residues that each coordinate and neutralize the charge of one of the three Na+ ions. DISP1-NNN and variants that disrupt single Na+ sites retain binding to, but are impaired in export of the lipid-modified Hedgehog protein to the SCUBE2 acceptor. Interaction of the amino-terminal signalling domain of the Sonic hedgehog protein (ShhN) with DISP1 occurs via an extensive buried surface area and contacts with an extended furin-cleaved DISP1 arm. Variability analysis reveals that ShhN binding is restricted to one extreme of a continuous series of DISP1 conformations. The bound and unbound DISP1 conformations display distinct Na+-site occupancies, which suggests a mechanism by which transmembrane Na+ flux may power extraction of the lipid-linked Hedgehog signal from the membrane. Na+-coordinating residues in DISP1 are conserved in PTCH1 and other metazoan RND family members, suggesting that Na+ flux powers their conformationally driven activities.
科研通智能强力驱动
Strongly Powered by AbleSci AI