Artificial Intelligence–assisted Prostate Cancer Diagnosis: Radiologic-Pathologic Correlation

医学 前列腺癌 分级(工程) 放射科 活检 前列腺 多参数磁共振成像 癌症 前列腺切除术 内科学 工程类 土木工程
作者
Lidia Alcalá Mata,Juan Antonio Retámero,Rajan T. Gupta,Roberto García Figueras,Antonio Luna
出处
期刊:Radiographics [Radiological Society of North America]
卷期号:41 (6): 1676-1697 被引量:19
标识
DOI:10.1148/rg.2021210020
摘要

The classic prostate cancer (PCa) diagnostic pathway that is based on prostate-specific antigen (PSA) levels and the findings of digital rectal examination followed by systematic biopsy has shown multiple limitations. The use of multiparametric MRI (mpMRI) is now widely accepted in men with clinical suspicion for PCa. In addition, clinical information, PSA density, risk calculators, and genomic and other "omics" biomarkers are being used to improve risk stratification. On the basis of mpMRI and MRI-targeted biopsies (MRI-TBx), new diagnostic pathways have been established, aiming to improve the limitations of the classic diagnostic approach. However, these pathways still show limitations associated with mpMRI and MRI-TBx. Definitive PCa diagnosis is made on the basis of histopathologic Gleason grading, which has demonstrated an excellent correlation with clinical outcomes. However, Gleason grading is done subjectively by pathologists and involves poor reproducibility, and PCa may have a heterogeneous distribution of histologic patterns. Thus, important discrepancies persist between biopsy tumor grading and final whole-organ pathologic assessment after radical prostatectomy. PCa offers a unique opportunity to establish a real radiologic-pathologic correlation, as whole-mount radical prostatectomy specimens permit a complete spatial relationship with mpMRI. Artificial intelligence is increasingly being applied to radiologic and pathologic images to improve clinical accuracy and efficiency in PCa diagnosis. This review delineates current PCa diagnostic pathways, with a focus on the role of mpMRI, MRI-TBx, and pathologic analysis. An overview of the expected improvements in PCa diagnosis derived from the use of artificial intelligence, integrated radiologic-pathologic systems, and decision support tools for multidisciplinary teams is provided. An invited commentary by Purysko is available online.Online supplemental material is available for this article.©RSNA, 2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率抽屉完成签到 ,获得积分10
刚刚
勤奋的汉堡完成签到,获得积分10
2秒前
有夜空的地方必然有星河完成签到 ,获得积分10
2秒前
able完成签到 ,获得积分10
3秒前
111完成签到 ,获得积分10
3秒前
泥巴完成签到 ,获得积分10
5秒前
汪姝完成签到,获得积分10
7秒前
听思念渐近完成签到,获得积分10
10秒前
柔之完成签到,获得积分10
10秒前
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
11秒前
iNk应助科研通管家采纳,获得10
11秒前
万能图书馆应助许子健采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
11秒前
坚强亦丝应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
汪姝发布了新的文献求助10
13秒前
舒适映寒完成签到,获得积分10
14秒前
vic完成签到,获得积分10
16秒前
发发完成签到 ,获得积分10
16秒前
ZM完成签到 ,获得积分10
19秒前
MHCL完成签到 ,获得积分10
22秒前
稗子完成签到,获得积分10
22秒前
Jj完成签到,获得积分10
23秒前
一拳一个小欧阳完成签到 ,获得积分10
26秒前
tylerconan完成签到,获得积分10
27秒前
日初发布了新的文献求助10
29秒前
33秒前
35秒前
皇帝的床帘完成签到,获得积分10
36秒前
David发布了新的文献求助10
37秒前
深情安青应助活力的三娘采纳,获得10
38秒前
SYL给SYL的求助进行了留言
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291654
求助须知:如何正确求助?哪些是违规求助? 2928132
关于积分的说明 8435479
捐赠科研通 2599943
什么是DOI,文献DOI怎么找? 1418887
科研通“疑难数据库(出版商)”最低求助积分说明 660150
邀请新用户注册赠送积分活动 642808