Methods for image denoising using convolutional neural network: a review

降噪 卷积神经网络 计算机科学 人工智能 非本地手段 视频去噪 模式识别(心理学) 图像去噪 噪音(视频) 图像(数学) 计算机视觉 视频处理 多视点视频编码 视频跟踪
作者
Ademola E. Ilesanmi,Taiwo Ilesanmi
出处
期刊:Complex & Intelligent Systems 卷期号:7 (5): 2179-2198 被引量:210
标识
DOI:10.1007/s40747-021-00428-4
摘要

Abstract Image denoising faces significant challenges, arising from the sources of noise. Specifically, Gaussian, impulse, salt, pepper, and speckle noise are complicated sources of noise in imaging. Convolutional neural network (CNN) has increasingly received attention in image denoising task. Several CNN methods for denoising images have been studied. These methods used different datasets for evaluation. In this paper, we offer an elaborate study on different CNN techniques used in image denoising. Different CNN methods for image denoising were categorized and analyzed. Popular datasets used for evaluating CNN image denoising methods were investigated. Several CNN image denoising papers were selected for review and analysis. Motivations and principles of CNN methods were outlined. Some state-of-the-arts CNN image denoising methods were depicted in graphical forms, while other methods were elaborately explained. We proposed a review of image denoising with CNN. Previous and recent papers on image denoising with CNN were selected. Potential challenges and directions for future research were equally fully explicated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whatever举报徐徐求助涉嫌违规
刚刚
renxiaoting发布了新的文献求助10
刚刚
小王同学完成签到,获得积分10
刚刚
pluto应助Aurora_Hu采纳,获得10
1秒前
大个应助就这还研究生僧采纳,获得10
1秒前
课后发布了新的文献求助10
2秒前
Foch发布了新的文献求助10
3秒前
Ryannnn完成签到,获得积分10
3秒前
3秒前
4秒前
桓白白发布了新的文献求助10
4秒前
5秒前
阿玉和阵雨完成签到,获得积分10
5秒前
明明完成签到,获得积分10
5秒前
段段砖应助万能的悲剧采纳,获得10
5秒前
段段砖应助万能的悲剧采纳,获得10
5秒前
cdercder应助万能的悲剧采纳,获得10
5秒前
6秒前
完美世界应助夏末未央采纳,获得10
6秒前
6秒前
JJ完成签到 ,获得积分10
6秒前
Lucas应助FCX采纳,获得10
6秒前
7秒前
7秒前
8秒前
XXaaxxxx发布了新的文献求助10
8秒前
阿曼尼完成签到 ,获得积分10
8秒前
9秒前
无限的葶发布了新的文献求助10
9秒前
淡定的天空完成签到,获得积分10
11秒前
11秒前
suiyi发布了新的文献求助10
11秒前
明明发布了新的文献求助10
11秒前
啊TiP完成签到,获得积分10
11秒前
echo完成签到,获得积分10
12秒前
寒冷河马完成签到,获得积分10
12秒前
12秒前
Mannose发布了新的文献求助10
13秒前
13秒前
晨儿发布了新的文献求助10
13秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725921
求助须知:如何正确求助?哪些是违规求助? 3271014
关于积分的说明 9969976
捐赠科研通 2986468
什么是DOI,文献DOI怎么找? 1638241
邀请新用户注册赠送积分活动 778036
科研通“疑难数据库(出版商)”最低求助积分说明 747383