Operational lifetime improvement of solution-processed OLEDs: Effect of exciton formation region and degradation analysis by impedance spectroscopy

离解(化学) 激子 极化子 激发态 分子 猝灭(荧光) 光谱学 材料科学 化学物理 介电谱 有机发光二极管 化学 光化学 光电子学 原子物理学 电子 图层(电子) 物理化学 荧光 纳米技术 光学 凝聚态物理 有机化学 物理 量子力学 电化学 电极
作者
Thi Na Le,Eun Young Park,Thangaraji Vasudevan,Min Chul Suh
出处
期刊:Organic Electronics [Elsevier]
卷期号:99: 106346-106346 被引量:14
标识
DOI:10.1016/j.orgel.2021.106346
摘要

It is known that the lifetime of the organic light-emitting diode device manufactured by the solution process is deteriorated due to the problem of mixing the interface between the hole transport layer and the emitting layer. We found that moving the recombination area away from the interface mixing zone as above doubled the efficiency (22.8 cd/A → 51.5 cd/A, 7.6% EQE → 14.6% EQE) and tripled the lifetime (14 h → 42 h). The reason was mainly attributed to the suppression of degradation due to exciton-polaron quenching at the mixing interface. Especially, the degradation of solution-processed devices has not been widely discussed. Therefore, in this study, we investigated thoroughly the deterioration of those devices by impedance spectroscopy and molecular simulation. The trap sites were revealed to present at the mixing zone when a large amount of charges accumulating there. These traps potentially resulted from the fragment of molecules undergoing the bond dissociation due to quenching of exciton and negative charge. Furthermore, by fitting Cole-Cole plots, we observed that the most stress region after half-lifetime test was the mixing zone. To confirm which molecules have a high possibility to dissociate, we calculated the bond dissociation energy of the possible dissociated bonds. The dissociation of host molecules from the anionic excited state due to quenching of exciton and negative polaron played the main role in device degradation. Meanwhile, the dissociation of hole transport molecules in the anionic charged states could also affect device lifetime by slow degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
于嗣濠完成签到 ,获得积分10
刚刚
36456657应助CC采纳,获得10
刚刚
优雅山柏发布了新的文献求助10
1秒前
Jacky完成签到,获得积分10
1秒前
脑洞疼应助无情的白桃采纳,获得10
1秒前
mm发布了新的文献求助10
1秒前
2秒前
2秒前
zoko发布了新的文献求助10
2秒前
2秒前
曾经的臻发布了新的文献求助10
2秒前
华仔应助S1mple_gentleman采纳,获得10
2秒前
科研通AI5应助CC采纳,获得10
2秒前
2秒前
3秒前
3秒前
张静静完成签到,获得积分10
4秒前
4秒前
震666发布了新的文献求助30
4秒前
MADKAI发布了新的文献求助10
4秒前
4秒前
117发布了新的文献求助10
4秒前
5秒前
5秒前
酶没美镁完成签到,获得积分10
5秒前
小二郎应助Rui采纳,获得10
5秒前
Libra完成签到,获得积分10
6秒前
雪儿发布了新的文献求助30
6秒前
无悔呀发布了新的文献求助10
6秒前
小巧的可仁完成签到 ,获得积分10
6秒前
6秒前
zhao完成签到,获得积分10
7秒前
masu发布了新的文献求助10
7秒前
冷酷尔琴发布了新的文献求助10
8秒前
Ll发布了新的文献求助10
8秒前
优雅山柏完成签到,获得积分10
8秒前
XinyiZhang发布了新的文献求助10
8秒前
小蘑菇应助yangyang采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740