Feature Robustness and Diagnostic Capabilities of Convolutional Neural Networks Against Radiomics Features in Computed Tomography Imaging

计算机科学 人工智能 计算机断层摄影术 无线电技术 模式识别(心理学) 卷积神经网络 断层摄影术 特征(语言学) 放射科 稳健性(进化) 医学 语言学 生物化学 基因 哲学 化学
作者
Sebastian Ziegelmayer,Stefan Reischl,F Harder,Marcus R. Makowski,Rickmer Braren,Joshua Gawlitza
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:57 (3): 171-177 被引量:19
标识
DOI:10.1097/rli.0000000000000827
摘要

Imaging phantoms were scanned twice on 3 computed tomography scanners from 2 different manufactures with varying tube voltages and currents. Phantoms were segmented, and features were extracted using PyRadiomics and a pretrained CNN. After standardization the concordance correlation coefficient (CCC), mean feature variance, feature range, and the coefficient of variant were calculated to assess feature robustness. In addition, the cosine similarity was calculated for the vectorized activation maps for an exemplary phantom. For the in vivo comparison, the radiomics and CNN features of 30 patients with hepatocellular carcinoma (HCC) and 30 patients with hepatic colon carcinoma metastasis were compared.In total, 851 radiomics features and 256 CNN features were extracted for each phantom. For all phantoms, the global CCC of the CNN features was above 98%, whereas the highest CCC for the radiomics features was 36%. The mean feature variance and feature range was significantly lower for the CNN features. Using a coefficient of variant ≤0.2 as a threshold to define robust features and averaging across all phantoms 346 of 851 (41%) radiomics features and 196 of 256 (77%) CNN features were found to be robust. The cosine similarity was greater than 0.98 for all scanner and parameter variations. In the retrospective analysis, 122 of the 256 CNN (49%) features showed significant differences between HCC and hepatic colon metastasis.Convolutional neural network features were more stable compared with radiomics features against technical variations. Moreover, the possibility of tumor entity differentiation based on CNN features was shown. Combined with visualization methods, CNN features are expected to increase reproducibility of quantitative image representations. Further studies are warranted to investigate the impact of feature stability on radiological image-based prediction of clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哲999发布了新的文献求助10
刚刚
xiaohu完成签到,获得积分10
1秒前
文艺的毛巾完成签到,获得积分20
1秒前
1秒前
勤快浣熊完成签到 ,获得积分10
1秒前
听风完成签到 ,获得积分10
1秒前
糖果苏扬完成签到 ,获得积分10
2秒前
jasmineee完成签到,获得积分10
2秒前
lurenjia009发布了新的文献求助10
2秒前
Orange应助小橙子采纳,获得10
2秒前
iiing完成签到 ,获得积分10
3秒前
想跟这个世界讲个道理完成签到,获得积分10
3秒前
3秒前
3秒前
Eva发布了新的文献求助10
4秒前
张有志应助本杰明采纳,获得30
4秒前
Dandelion完成签到,获得积分10
4秒前
完美世界应助葛辉辉采纳,获得10
5秒前
龙泉完成签到 ,获得积分10
5秒前
Khr1stINK发布了新的文献求助20
5秒前
美女发布了新的文献求助10
5秒前
汉堡包应助烫嘴普通话采纳,获得10
5秒前
长颈鹿完成签到,获得积分10
7秒前
Koi完成签到,获得积分10
7秒前
打卤完成签到,获得积分10
7秒前
CodeCraft应助Intro采纳,获得10
8秒前
SciGPT应助cat采纳,获得10
8秒前
Minkslion发布了新的文献求助10
8秒前
9秒前
酷波er应助细腻的麦片采纳,获得10
10秒前
lurenjia009完成签到,获得积分10
11秒前
11秒前
科研通AI5应助huangyi采纳,获得10
12秒前
yxy完成签到,获得积分10
12秒前
Orange应助yam001采纳,获得30
12秒前
12秒前
竹斟酒完成签到,获得积分10
13秒前
13秒前
13秒前
请叫我风吹麦浪应助Wxd0211采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762