已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Feature Robustness and Diagnostic Capabilities of Convolutional Neural Networks Against Radiomics Features in Computed Tomography Imaging

计算机科学 人工智能 计算机断层摄影术 无线电技术 模式识别(心理学) 卷积神经网络 断层摄影术 特征(语言学) 放射科 稳健性(进化) 医学 语言学 生物化学 基因 哲学 化学
作者
Sebastian Ziegelmayer,Stefan Reischl,F Harder,Marcus R. Makowski,Rickmer Braren,Joshua Gawlitza
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:57 (3): 171-177 被引量:19
标识
DOI:10.1097/rli.0000000000000827
摘要

Imaging phantoms were scanned twice on 3 computed tomography scanners from 2 different manufactures with varying tube voltages and currents. Phantoms were segmented, and features were extracted using PyRadiomics and a pretrained CNN. After standardization the concordance correlation coefficient (CCC), mean feature variance, feature range, and the coefficient of variant were calculated to assess feature robustness. In addition, the cosine similarity was calculated for the vectorized activation maps for an exemplary phantom. For the in vivo comparison, the radiomics and CNN features of 30 patients with hepatocellular carcinoma (HCC) and 30 patients with hepatic colon carcinoma metastasis were compared.In total, 851 radiomics features and 256 CNN features were extracted for each phantom. For all phantoms, the global CCC of the CNN features was above 98%, whereas the highest CCC for the radiomics features was 36%. The mean feature variance and feature range was significantly lower for the CNN features. Using a coefficient of variant ≤0.2 as a threshold to define robust features and averaging across all phantoms 346 of 851 (41%) radiomics features and 196 of 256 (77%) CNN features were found to be robust. The cosine similarity was greater than 0.98 for all scanner and parameter variations. In the retrospective analysis, 122 of the 256 CNN (49%) features showed significant differences between HCC and hepatic colon metastasis.Convolutional neural network features were more stable compared with radiomics features against technical variations. Moreover, the possibility of tumor entity differentiation based on CNN features was shown. Combined with visualization methods, CNN features are expected to increase reproducibility of quantitative image representations. Further studies are warranted to investigate the impact of feature stability on radiological image-based prediction of clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dream点壹完成签到,获得积分10
刚刚
碧蓝醉蝶发布了新的文献求助10
刚刚
英姑应助佳丽采纳,获得10
1秒前
xxxllllll完成签到,获得积分10
2秒前
zhaoxi完成签到 ,获得积分10
2秒前
平常的半凡完成签到,获得积分10
2秒前
文艺的念之完成签到 ,获得积分10
4秒前
jojo完成签到,获得积分10
4秒前
大力的宝川完成签到 ,获得积分10
4秒前
Doc_Ocean完成签到,获得积分10
5秒前
orixero应助rrrrr采纳,获得10
6秒前
乐乐应助淡淡博采纳,获得10
6秒前
_hhhjhhh完成签到 ,获得积分10
10秒前
10秒前
汤汤完成签到 ,获得积分10
13秒前
qinqiny完成签到 ,获得积分10
13秒前
平淡小丸子完成签到 ,获得积分10
15秒前
希望天下0贩的0应助zzz采纳,获得10
16秒前
Niuniu发布了新的文献求助10
16秒前
xxxllllll发布了新的文献求助10
18秒前
复方蛋酥卷完成签到,获得积分10
18秒前
wanci应助shinn采纳,获得10
19秒前
朴素的山蝶完成签到 ,获得积分10
19秒前
小新小新完成签到 ,获得积分10
19秒前
21秒前
Anna完成签到 ,获得积分10
23秒前
rick3455完成签到 ,获得积分10
23秒前
mimi发布了新的文献求助10
23秒前
刻苦的小土豆完成签到 ,获得积分10
23秒前
Cain完成签到,获得积分10
24秒前
Nicho发布了新的文献求助10
24秒前
25秒前
26秒前
怕黑鲂完成签到 ,获得积分10
26秒前
wax完成签到,获得积分10
27秒前
淡淡博发布了新的文献求助10
30秒前
Mr.H完成签到 ,获得积分10
30秒前
耿大海发布了新的文献求助100
31秒前
Chaos完成签到 ,获得积分10
31秒前
可爱的函函应助芒小果采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968146
求助须知:如何正确求助?哪些是违规求助? 3513140
关于积分的说明 11166611
捐赠科研通 3248319
什么是DOI,文献DOI怎么找? 1794192
邀请新用户注册赠送积分活动 874904
科研通“疑难数据库(出版商)”最低求助积分说明 804629