Identification of difficult to intubate patients from frontal face images using an ensemble of deep learning models

人工智能 深度学习 计算机科学 集成学习 集合预报 面子(社会学概念) 卷积神经网络 机器学习 随机森林 鉴定(生物学) 灵敏度(控制系统) 模式识别(心理学) 生物 工程类 社会学 植物 社会科学 电子工程
作者
Thomas E. Tavolara,Metin N. Gürcan,Scott Segal,M. Khalid Khan Niazi
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104737-104737 被引量:18
标识
DOI:10.1016/j.compbiomed.2021.104737
摘要

Failure to identify difficult intubation is the leading cause of anesthesia-related death and morbidity. Despite preoperative airway assessment, 75–93% of difficult intubations are unanticipated, and airway examination methods underperform, with sensitivities of 20–62% and specificities of 82–97%. To overcome these impediments, we aim to develop a deep learning model to identify difficult to intubate patients using frontal face images. We proposed an ensemble of convolutional neural networks which leverages a database of celebrity facial images to learn robust features of multiple face regions. This ensemble extracts features from patient images (n = 152) which are subsequently classified by a respective ensemble of attention-based multiple instance learning models. Through majority voting, a patient is classified as difficult or easy to intubate. Whereas two conventional bedside tests resulted in AUCs of 0.6042 and 0.4661, the proposed method resulted in an AUC of 0.7105 using a cohort of 76 difficult and 76 easy to intubate patients. Generic features yielded AUCs of 0.4654–0.6278. The proposed model can operate at high sensitivity and low specificity (0.9079 and 0.4474) or low sensitivity and high specificity (0.3684 and 0.9605). The proposed ensembled model outperforms conventional bedside tests and generic features. Side facial images may improve the performance of the proposed model. The proposed method significantly surpasses conventional bedside tests and deep learning methods. We expect our model will play an important role in developing deep learning methods where frontal face features play an important role.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三黑猫应助liu采纳,获得10
1秒前
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
Junrong应助科研通管家采纳,获得10
1秒前
maox1aoxin应助科研通管家采纳,获得30
1秒前
852应助科研通管家采纳,获得30
2秒前
一一应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
独特觅翠应助lhr采纳,获得20
2秒前
彭于晏应助北方木棉采纳,获得10
3秒前
馨馨完成签到,获得积分10
4秒前
skyinner完成签到 ,获得积分10
6秒前
Le完成签到,获得积分10
6秒前
代扁扁完成签到 ,获得积分10
7秒前
8秒前
9秒前
9秒前
wangyu完成签到,获得积分10
9秒前
cata发布了新的文献求助20
10秒前
大钱发布了新的文献求助10
11秒前
11秒前
12秒前
李健的粉丝团团长应助一_采纳,获得10
13秒前
kun完成签到,获得积分10
13秒前
14秒前
qin发布了新的文献求助30
15秒前
不配.应助卯一采纳,获得20
15秒前
17秒前
顾矜应助大侦探皮卡丘采纳,获得10
18秒前
19秒前
dingxiaosong完成签到,获得积分10
20秒前
20秒前
20秒前
科研通AI2S应助cy采纳,获得20
21秒前
22秒前
orixero应助cc采纳,获得10
23秒前
谦让寄容完成签到,获得积分10
24秒前
26秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206956
求助须知:如何正确求助?哪些是违规求助? 2856304
关于积分的说明 8104016
捐赠科研通 2521498
什么是DOI,文献DOI怎么找? 1354593
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613292