Identification of difficult to intubate patients from frontal face images using an ensemble of deep learning models

人工智能 深度学习 计算机科学 集成学习 集合预报 面子(社会学概念) 卷积神经网络 机器学习 随机森林 鉴定(生物学) 灵敏度(控制系统) 模式识别(心理学) 生物 工程类 社会学 植物 社会科学 电子工程
作者
Thomas E. Tavolara,Metin N. Gürcan,Scott Segal,M. Khalid Khan Niazi
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:136: 104737-104737 被引量:18
标识
DOI:10.1016/j.compbiomed.2021.104737
摘要

Failure to identify difficult intubation is the leading cause of anesthesia-related death and morbidity. Despite preoperative airway assessment, 75–93% of difficult intubations are unanticipated, and airway examination methods underperform, with sensitivities of 20–62% and specificities of 82–97%. To overcome these impediments, we aim to develop a deep learning model to identify difficult to intubate patients using frontal face images. We proposed an ensemble of convolutional neural networks which leverages a database of celebrity facial images to learn robust features of multiple face regions. This ensemble extracts features from patient images (n = 152) which are subsequently classified by a respective ensemble of attention-based multiple instance learning models. Through majority voting, a patient is classified as difficult or easy to intubate. Whereas two conventional bedside tests resulted in AUCs of 0.6042 and 0.4661, the proposed method resulted in an AUC of 0.7105 using a cohort of 76 difficult and 76 easy to intubate patients. Generic features yielded AUCs of 0.4654–0.6278. The proposed model can operate at high sensitivity and low specificity (0.9079 and 0.4474) or low sensitivity and high specificity (0.3684 and 0.9605). The proposed ensembled model outperforms conventional bedside tests and generic features. Side facial images may improve the performance of the proposed model. The proposed method significantly surpasses conventional bedside tests and deep learning methods. We expect our model will play an important role in developing deep learning methods where frontal face features play an important role.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一完成签到 ,获得积分10
1秒前
llllhh发布了新的文献求助10
1秒前
王来敏完成签到,获得积分10
1秒前
1秒前
许愿非树完成签到,获得积分10
1秒前
FashionBoy应助健康的语芙采纳,获得10
1秒前
FashionBoy应助stupid采纳,获得10
2秒前
科研通AI5应助回笼觉教主采纳,获得10
2秒前
yyymmma发布了新的文献求助10
2秒前
yzl发布了新的文献求助10
3秒前
hyr完成签到 ,获得积分10
3秒前
种花兔发布了新的文献求助10
3秒前
3秒前
4秒前
zhao发布了新的文献求助10
4秒前
shhoing应助cc采纳,获得50
4秒前
缓慢海亦发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
万能图书馆应助lw采纳,获得10
7秒前
9秒前
9秒前
stupid发布了新的文献求助10
10秒前
mayday完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
万能图书馆应助GJL采纳,获得10
12秒前
hyh完成签到,获得积分10
12秒前
Viviiviii完成签到,获得积分10
12秒前
12秒前
田様应助有人喜欢蓝采纳,获得10
12秒前
yyymmma完成签到,获得积分10
13秒前
13秒前
可爱的函函应助缓慢海亦采纳,获得10
14秒前
你爸爸完成签到,获得积分10
14秒前
英俊的铭应助郑小怂采纳,获得10
14秒前
十二个完成签到,获得积分10
15秒前
15秒前
15秒前
meimei完成签到 ,获得积分10
15秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662822
求助须知:如何正确求助?哪些是违规求助? 3223668
关于积分的说明 9752507
捐赠科研通 2933578
什么是DOI,文献DOI怎么找? 1606153
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734771