Machine Learning to Predict Outcomes in Patients with Acute Pulmonary Embolism Who Prematurely Discontinued Anticoagulant Therapy

中止 医学 肺栓塞 接收机工作特性 置信区间 逻辑回归 内科学 曲线下面积 外科
作者
Damián Mora,Juan J. López-Núñez,Jorge Mateo,Behnood Bikdeli,Stefano Barco,Javier Trujillo‐Santos,Silvia Soler,Llorenç Font,Marijan Bosevski,Manuel Monréal
出处
期刊:Thrombosis and Haemostasis [Georg Thieme Verlag KG]
卷期号:122 (04): 570-577 被引量:12
标识
DOI:10.1055/a-1525-7220
摘要

Patients with pulmonary embolism (PE) who prematurely discontinue anticoagulant therapy (<90 days) are at an increased risk for death or recurrences.We used the data from the RIETE (Registro Informatizado de Pacientes con Enfermedad TromboEmbólica) registry to compare the prognostic ability of five machine-learning (ML) models and logistic regression to identify patients at increased risk for the composite of fatal PE or recurrent venous thromboembolism (VTE) 30 days after discontinuation. ML models included decision tree, k-nearest neighbors algorithm, support vector machine, Ensemble, and neural network [NN]. A "full" model with 70 variables and a "reduced" model with 23 were analyzed. Model performance was assessed by confusion matrix metrics on the testing data for each model and a calibration plot.Among 34,447 patients with PE, 1,348 (3.9%) discontinued therapy prematurely. Fifty-one (3.8%) developed fatal PE or sudden death and 24 (1.8%) had nonfatal VTE recurrences within 30 days after discontinuation. ML-NN was the best method for identification of patients experiencing the composite endpoint, predicting the composite outcome with an area under receiver operating characteristic (ROC) curve of 0.96 (95% confidence interval [CI]: 0.95-0.98), using either 70 or 23 variables captured before discontinuation. Similar numbers were obtained for sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. The discrimination of logistic regression was inferior (area under ROC curve, 0.76 [95% CI: 0.70-0.81]). Calibration plots showed similar deviations from the perfect line for ML-NN and logistic regression.The ML-NN method very well predicted the composite outcome after premature discontinuation of anticoagulation and outperformed traditional logistic regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助闻疏采纳,获得10
刚刚
fu发布了新的文献求助50
2秒前
诙识可好完成签到,获得积分20
4秒前
研友_VZG7GZ应助美好斓采纳,获得10
7秒前
7秒前
斐斐完成签到,获得积分10
8秒前
smallxiao完成签到 ,获得积分10
9秒前
葭蓶应助kk采纳,获得10
9秒前
10秒前
11秒前
smallxiao关注了科研通微信公众号
13秒前
14秒前
wanci应助Y哦莫哦莫采纳,获得30
14秒前
虚幻的初蓝完成签到,获得积分10
14秒前
婕婕完成签到,获得积分10
15秒前
葵葵发布了新的文献求助20
15秒前
16秒前
许容发布了新的文献求助20
16秒前
兴奋的渊思完成签到,获得积分10
18秒前
飞飞发布了新的文献求助10
20秒前
XDM发布了新的文献求助20
22秒前
23秒前
绿色的大嘴鸟完成签到 ,获得积分10
23秒前
美好斓发布了新的文献求助10
24秒前
康琦琦完成签到 ,获得积分20
24秒前
24秒前
25秒前
九天完成签到 ,获得积分10
25秒前
Y.B.Cao发布了新的文献求助10
25秒前
nn完成签到,获得积分10
26秒前
26秒前
27秒前
不要再打游戏了完成签到,获得积分10
28秒前
29秒前
29秒前
1257应助傻瓜子采纳,获得10
29秒前
hehe完成签到,获得积分20
29秒前
上官若男应助Lit-Tse采纳,获得10
30秒前
31秒前
陈陈陈晨发布了新的文献求助10
31秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057090
求助须知:如何正确求助?哪些是违规求助? 2713644
关于积分的说明 7436720
捐赠科研通 2358721
什么是DOI,文献DOI怎么找? 1249510
科研通“疑难数据库(出版商)”最低求助积分说明 607166
版权声明 596314