Machine Learning to Predict Outcomes in Patients with Acute Pulmonary Embolism Who Prematurely Discontinued Anticoagulant Therapy

中止 医学 肺栓塞 接收机工作特性 置信区间 逻辑回归 内科学 曲线下面积 外科
作者
Damián Mora,J. Aizpurua Nieto,Jorge Mateo,Behnood Bikdeli,Stefano Barco,Javier Trujillo‐Santos,Silvia Soler,Llorenç Font,Marijan Bosevski,Manuel Monréal
出处
期刊:Thrombosis and Haemostasis [Thieme Medical Publishers (Germany)]
卷期号:122 (04): 570-577 被引量:20
标识
DOI:10.1055/a-1525-7220
摘要

Patients with pulmonary embolism (PE) who prematurely discontinue anticoagulant therapy (<90 days) are at an increased risk for death or recurrences.We used the data from the RIETE (Registro Informatizado de Pacientes con Enfermedad TromboEmbólica) registry to compare the prognostic ability of five machine-learning (ML) models and logistic regression to identify patients at increased risk for the composite of fatal PE or recurrent venous thromboembolism (VTE) 30 days after discontinuation. ML models included decision tree, k-nearest neighbors algorithm, support vector machine, Ensemble, and neural network [NN]. A "full" model with 70 variables and a "reduced" model with 23 were analyzed. Model performance was assessed by confusion matrix metrics on the testing data for each model and a calibration plot.Among 34,447 patients with PE, 1,348 (3.9%) discontinued therapy prematurely. Fifty-one (3.8%) developed fatal PE or sudden death and 24 (1.8%) had nonfatal VTE recurrences within 30 days after discontinuation. ML-NN was the best method for identification of patients experiencing the composite endpoint, predicting the composite outcome with an area under receiver operating characteristic (ROC) curve of 0.96 (95% confidence interval [CI]: 0.95-0.98), using either 70 or 23 variables captured before discontinuation. Similar numbers were obtained for sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. The discrimination of logistic regression was inferior (area under ROC curve, 0.76 [95% CI: 0.70-0.81]). Calibration plots showed similar deviations from the perfect line for ML-NN and logistic regression.The ML-NN method very well predicted the composite outcome after premature discontinuation of anticoagulation and outperformed traditional logistic regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酸奶七完成签到,获得积分10
1秒前
陶佳仪完成签到,获得积分10
2秒前
江姜完成签到 ,获得积分10
2秒前
25上岸完成签到,获得积分10
2秒前
包容的鸽子完成签到,获得积分20
3秒前
孟小云完成签到,获得积分10
3秒前
852应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
核桃应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
tangli完成签到 ,获得积分10
4秒前
元谷雪应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
元谷雪应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
Tourist应助科研通管家采纳,获得10
5秒前
高贵艳血完成签到 ,获得积分10
5秒前
Orange应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
JamesPei应助夜信采纳,获得30
7秒前
zxc完成签到,获得积分10
7秒前
无私小苏发布了新的文献求助10
7秒前
9秒前
9秒前
10秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5224818
求助须知:如何正确求助?哪些是违规求助? 4396749
关于积分的说明 13684880
捐赠科研通 4261194
什么是DOI,文献DOI怎么找? 2338338
邀请新用户注册赠送积分活动 1335711
关于科研通互助平台的介绍 1291564