Machine Learning to Predict Outcomes in Patients with Acute Pulmonary Embolism Who Prematurely Discontinued Anticoagulant Therapy

中止 医学 肺栓塞 接收机工作特性 置信区间 逻辑回归 内科学 曲线下面积 外科
作者
Damián Mora,Juan J. López-Núñez,Jorge Mateo,Behnood Bikdeli,Stefano Barco,Javier Trujillo‐Santos,Silvia Soler,Llorenç Font,Marijan Bosevski,Manuel Monréal
出处
期刊:Thrombosis and Haemostasis [Georg Thieme Verlag KG]
卷期号:122 (04): 570-577 被引量:12
标识
DOI:10.1055/a-1525-7220
摘要

Patients with pulmonary embolism (PE) who prematurely discontinue anticoagulant therapy (<90 days) are at an increased risk for death or recurrences.We used the data from the RIETE (Registro Informatizado de Pacientes con Enfermedad TromboEmbólica) registry to compare the prognostic ability of five machine-learning (ML) models and logistic regression to identify patients at increased risk for the composite of fatal PE or recurrent venous thromboembolism (VTE) 30 days after discontinuation. ML models included decision tree, k-nearest neighbors algorithm, support vector machine, Ensemble, and neural network [NN]. A "full" model with 70 variables and a "reduced" model with 23 were analyzed. Model performance was assessed by confusion matrix metrics on the testing data for each model and a calibration plot.Among 34,447 patients with PE, 1,348 (3.9%) discontinued therapy prematurely. Fifty-one (3.8%) developed fatal PE or sudden death and 24 (1.8%) had nonfatal VTE recurrences within 30 days after discontinuation. ML-NN was the best method for identification of patients experiencing the composite endpoint, predicting the composite outcome with an area under receiver operating characteristic (ROC) curve of 0.96 (95% confidence interval [CI]: 0.95-0.98), using either 70 or 23 variables captured before discontinuation. Similar numbers were obtained for sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. The discrimination of logistic regression was inferior (area under ROC curve, 0.76 [95% CI: 0.70-0.81]). Calibration plots showed similar deviations from the perfect line for ML-NN and logistic regression.The ML-NN method very well predicted the composite outcome after premature discontinuation of anticoagulation and outperformed traditional logistic regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smile发布了新的文献求助10
刚刚
1秒前
Lore完成签到 ,获得积分10
1秒前
1秒前
jiang完成签到,获得积分10
2秒前
2秒前
无奈的酒窝关注了科研通微信公众号
3秒前
毛毛完成签到,获得积分10
3秒前
正在完成签到,获得积分10
4秒前
4秒前
充电宝应助JR采纳,获得10
5秒前
5秒前
cc完成签到,获得积分20
5秒前
李爱国应助111采纳,获得10
5秒前
jy发布了新的文献求助10
5秒前
好好完成签到 ,获得积分10
6秒前
阿希塔完成签到,获得积分10
6秒前
JamesPei应助看看采纳,获得10
6秒前
8秒前
8秒前
卢健辉发布了新的文献求助10
8秒前
9秒前
cookie完成签到,获得积分10
9秒前
JMZ完成签到 ,获得积分10
11秒前
英姑应助星星采纳,获得10
11秒前
spurs17发布了新的文献求助30
12秒前
LH完成签到,获得积分10
12秒前
CodeCraft应助Island采纳,获得10
13秒前
annis完成签到,获得积分10
13秒前
小黄应助asir_xw采纳,获得10
14秒前
认真的rain完成签到,获得积分10
14秒前
糊涂的小伙完成签到,获得积分10
15秒前
芒果豆豆完成签到,获得积分10
15秒前
赎罪完成签到 ,获得积分10
16秒前
卢健辉完成签到,获得积分10
16秒前
16秒前
17秒前
负责的中道完成签到,获得积分10
18秒前
dyh6802发布了新的文献求助10
18秒前
儒雅八宝粥完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808