Machine Learning to Predict Outcomes in Patients with Acute Pulmonary Embolism Who Prematurely Discontinued Anticoagulant Therapy

中止 医学 肺栓塞 接收机工作特性 置信区间 逻辑回归 内科学 曲线下面积 外科
作者
Damián Mora,J. Aizpurua Nieto,Jorge Mateo,Behnood Bikdeli,Stefano Barco,Javier Trujillo‐Santos,Silvia Soler,Llorenç Font,Marijan Bosevski,Manuel Monréal
出处
期刊:Thrombosis and Haemostasis [Georg Thieme Verlag KG]
卷期号:122 (04): 570-577 被引量:20
标识
DOI:10.1055/a-1525-7220
摘要

Patients with pulmonary embolism (PE) who prematurely discontinue anticoagulant therapy (<90 days) are at an increased risk for death or recurrences.We used the data from the RIETE (Registro Informatizado de Pacientes con Enfermedad TromboEmbólica) registry to compare the prognostic ability of five machine-learning (ML) models and logistic regression to identify patients at increased risk for the composite of fatal PE or recurrent venous thromboembolism (VTE) 30 days after discontinuation. ML models included decision tree, k-nearest neighbors algorithm, support vector machine, Ensemble, and neural network [NN]. A "full" model with 70 variables and a "reduced" model with 23 were analyzed. Model performance was assessed by confusion matrix metrics on the testing data for each model and a calibration plot.Among 34,447 patients with PE, 1,348 (3.9%) discontinued therapy prematurely. Fifty-one (3.8%) developed fatal PE or sudden death and 24 (1.8%) had nonfatal VTE recurrences within 30 days after discontinuation. ML-NN was the best method for identification of patients experiencing the composite endpoint, predicting the composite outcome with an area under receiver operating characteristic (ROC) curve of 0.96 (95% confidence interval [CI]: 0.95-0.98), using either 70 or 23 variables captured before discontinuation. Similar numbers were obtained for sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. The discrimination of logistic regression was inferior (area under ROC curve, 0.76 [95% CI: 0.70-0.81]). Calibration plots showed similar deviations from the perfect line for ML-NN and logistic regression.The ML-NN method very well predicted the composite outcome after premature discontinuation of anticoagulation and outperformed traditional logistic regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龚仕杰完成签到 ,获得积分10
1秒前
kermitds完成签到 ,获得积分10
1秒前
Sunny完成签到 ,获得积分0
2秒前
无敌干扰素完成签到,获得积分10
3秒前
ling完成签到,获得积分10
4秒前
4秒前
马大帅发布了新的文献求助10
4秒前
Ray发布了新的文献求助10
4秒前
lyk2815完成签到,获得积分10
4秒前
5秒前
kckckckckc完成签到 ,获得积分10
5秒前
wlnhyF完成签到,获得积分10
5秒前
可爱的函函应助曾准采纳,获得10
6秒前
6秒前
7秒前
7秒前
FashionBoy应助机灵的竺采纳,获得10
8秒前
楚寅完成签到 ,获得积分10
8秒前
Akim应助mofei采纳,获得10
9秒前
阿宝完成签到,获得积分0
9秒前
9秒前
9秒前
咎淇完成签到,获得积分10
9秒前
10秒前
如意的新蕾完成签到 ,获得积分10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
10秒前
斯文曼波应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
老福贵儿应助科研通管家采纳,获得10
10秒前
老福贵儿应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
思源应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
HeAuBook应助科研通管家采纳,获得30
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379399
求助须知:如何正确求助?哪些是违规求助? 4503761
关于积分的说明 14016516
捐赠科研通 4412511
什么是DOI,文献DOI怎么找? 2423853
邀请新用户注册赠送积分活动 1416678
关于科研通互助平台的介绍 1394244