A new inverse data envelopment analysis approach to achieve China’s road transportation safety objectives

数据包络分析 实现(概率) 运输工程 约束(计算机辅助设计) 风险分析(工程) 过程(计算) 计算机科学 路径(计算) 安全工程 运筹学 工程类 业务 可靠性工程 数学 机械工程 数学优化 统计 程序设计语言 操作系统
作者
Lei Chen,Yan Gao,Meijuan Li,Ying‐Ming Wang,Li-Huan Liao
出处
期刊:Safety Science [Elsevier]
卷期号:142: 105362-105362 被引量:19
标识
DOI:10.1016/j.ssci.2021.105362
摘要

The number of fatalities in road traffic accidents shows a gradual upward trend in recent years, and this has brought great pressure on the realization of China’s safety objectives. Meanwhile, how to make a scientific and feasible path for achieving the safety objective also poses a great challenge to the existing methods. Therefore, the paper introduces the objective constraint to develop a new inverse data envelopment analysis (DEA) model with undesirable outputs for ensuring the realization of safety objective under the current technical level. Subsequently, two safety objectives and two additional objectives are defined for China’s road transportation according to the actual requirements of decision makers, and then their realization paths are determined by using the new inverse DEA model, respectively. By analyzing the connections and differences of different objectives and their realization paths, some useful implications are summarized to promote the realization of the safety objective of China’s road transportation: First, identifying the requirements of decision makers is critical for making the realization path of safety objective; second, reducing desirable outputs, increasing inputs, and improving safety efficiency are the efficient ways to achieve safety objective; third, the influence of technology heterogeneity should be properly considered in the process of making the realization path of safety objective. In general, the paper provides a powerful decision support for achieving the safety objective of China’s road transportation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤独的访云完成签到 ,获得积分10
刚刚
刚刚
ZsJJkk完成签到,获得积分10
刚刚
刚刚
天阳完成签到,获得积分10
刚刚
果冻橙发布了新的文献求助10
刚刚
完美世界应助可爱的弘文采纳,获得10
1秒前
苏苏完成签到,获得积分10
1秒前
1秒前
房LY完成签到,获得积分10
1秒前
1秒前
1秒前
QQ完成签到,获得积分10
1秒前
2秒前
赘婿应助典雅的俊驰采纳,获得10
2秒前
liu完成签到,获得积分10
2秒前
。。。完成签到,获得积分10
2秒前
2秒前
天马行空完成签到,获得积分10
2秒前
3秒前
channy完成签到,获得积分10
3秒前
科研通AI6应助芝士奶盖采纳,获得10
3秒前
cc完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
端庄荔枝发布了新的文献求助10
6秒前
6秒前
陈惠卿88完成签到,获得积分10
6秒前
6秒前
7秒前
忧郁道之发布了新的文献求助10
7秒前
冀1完成签到,获得积分10
7秒前
7秒前
8秒前
zxc发布了新的文献求助10
8秒前
8秒前
Deb发布了新的文献求助10
8秒前
方法法国衣服头发完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271