化学
细胞内
氧化应激
聚合
氧化磷酸化
细胞凋亡
细胞生物学
抗氧化剂
癌细胞
细胞
生物物理学
聚合物
生物化学
活性氧
癌症
生物
有机化学
遗传学
作者
Yiheng Dai,Tianyu Li,Zhiheng Zhang,Yizheng Tan,Shuojiong Pan,Luo Zhang,Huaping Xu
摘要
Intracellular polymerization is an emerging technique that can potentially modulate cell behavior, but remains challenging because of the complexity of the cellular environment. Herein, taking advantage of the chemical properties of organotellurides and the intracellular redox environment, we develop a novel oxidative polymerization reaction that can be conducted in cells without external stimuli. We demonstrate that this polymerization reaction is triggered by the intracellular reactive oxygen species (ROS), thus selectively proceeding in cancer cells and inducing apoptosis via a unique self-amplification mechanism. The polymerization products are shown to disrupt intracellular antioxidant systems through interacting with selenoproteins, leading to greater oxidative stress that would further the oxidative polymerization and eventually activate ROS-related apoptosis pathways. The selective anticancer efficacy and biosafety of our strategy are proven both in vitro and in vivo. Ultimately, this study enables a new possibility for chemists to manipulate cellular proliferation and apoptosis through artificial chemical reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI