Feasibility of a rapid and non-destructive methodology for the study and discrimination of pine nuts using near-infrared hyperspectral analysis and chemometrics

化学计量学 高光谱成像 近红外光谱 环境科学 计算机科学 模式识别(心理学) 遥感 化学 色谱法 人工智能 光学 地质学 物理
作者
Rocio Ríos‐Reina,Raquel M. Callejón,José Manuel Amigo
出处
期刊:Food Control [Elsevier]
卷期号:130: 108365-108365 被引量:27
标识
DOI:10.1016/j.foodcont.2021.108365
摘要

Spanish pine nut is highly appreciated globally for its aroma and taste. Nevertheless, its market is affected by the growing presence of Chinese pine nuts, entailing mislabeling and counterfeits. In this study, near-infrared hyperspectral imaging (940–1625 nm) coupled to chemometrics, was applied, for the first time, to perform a spectral study (identification of chemical distribution and composition) of commercial pine nuts labeled on their package as Spanish and Chinese and to develop a single class-modelling classification model. Sixty-three pine nuts from both marketed origin labels and different qualities were analysed. Principal component analysis (PCA) and multivariate curve resolution (MCR) showed the chemical distribution of the major compounds (bands around 1170–1210 nm and 1485–1550 nm, associated with fats and fatty acids and water and proteins, respectively) of each marketed origin. Soft independent modelling of class analogies (SIMCA) classified the samples according to their labeling of origin, in a pixel-based and nut-based approach, obtaining 89–98% and 84–100% of correct prediction, respectively. This preliminary study demonstrated that the proposed methodology could be used as a fast, comprehensive and innovative quality control tool (for characterisation and classification) for the pine nut industry. • NIR-HSI was for first-time applied for studying and classifying pine nuts. • It allows studying internal pine nut composition and chemical distribution. • Satisfactory classification models were achieved according to two marketed origins. • This approach shows a comprehensive fast and reliable quality control for pine nuts. • NIR-HSI could enhance pine nut traceability and detection of compositional changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaosui完成签到 ,获得积分10
1秒前
gc完成签到 ,获得积分10
1秒前
3秒前
李欣华发布了新的文献求助10
5秒前
萤火虫完成签到,获得积分10
6秒前
cincrady完成签到,获得积分10
6秒前
柳斯凌发布了新的文献求助10
6秒前
情怀应助tt耶采纳,获得10
7秒前
8秒前
伟钧完成签到,获得积分10
9秒前
hhhzzz完成签到,获得积分10
9秒前
萤火虫发布了新的文献求助10
10秒前
NexusExplorer应助Jasonwjp采纳,获得10
11秒前
李铭发布了新的文献求助10
12秒前
复杂的凝冬完成签到,获得积分10
14秒前
思源应助李欣华采纳,获得10
15秒前
19秒前
研友_nV2ROn完成签到,获得积分10
22秒前
22秒前
Xulyun完成签到 ,获得积分10
23秒前
混沌完成签到,获得积分10
24秒前
25秒前
26秒前
Singularity应助送你花花采纳,获得20
27秒前
29秒前
29秒前
Zhidong Wei发布了新的文献求助10
29秒前
30秒前
小蘑菇应助从容甜瓜采纳,获得10
32秒前
35秒前
zhu0101发布了新的文献求助10
35秒前
哈哈哈哈哈完成签到,获得积分10
35秒前
和谐的小懒猪完成签到 ,获得积分10
39秒前
40秒前
爆米花应助ll采纳,获得10
41秒前
SSS完成签到 ,获得积分10
42秒前
43秒前
Zhidong Wei完成签到,获得积分10
43秒前
云太医完成签到 ,获得积分10
44秒前
卤西瓜的科研蛋完成签到,获得积分10
46秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155762
求助须知:如何正确求助?哪些是违规求助? 2807008
关于积分的说明 7871439
捐赠科研通 2465303
什么是DOI,文献DOI怎么找? 1312209
科研通“疑难数据库(出版商)”最低求助积分说明 629947
版权声明 601905