Feasibility of a rapid and non-destructive methodology for the study and discrimination of pine nuts using near-infrared hyperspectral analysis and chemometrics

化学计量学 高光谱成像 近红外光谱 环境科学 计算机科学 模式识别(心理学) 遥感 化学 色谱法 人工智能 光学 地质学 物理
作者
Rocio Ríos‐Reina,Raquel M. Callejón,José Manuel Amigo
出处
期刊:Food Control [Elsevier BV]
卷期号:130: 108365-108365 被引量:27
标识
DOI:10.1016/j.foodcont.2021.108365
摘要

Spanish pine nut is highly appreciated globally for its aroma and taste. Nevertheless, its market is affected by the growing presence of Chinese pine nuts, entailing mislabeling and counterfeits. In this study, near-infrared hyperspectral imaging (940–1625 nm) coupled to chemometrics, was applied, for the first time, to perform a spectral study (identification of chemical distribution and composition) of commercial pine nuts labeled on their package as Spanish and Chinese and to develop a single class-modelling classification model. Sixty-three pine nuts from both marketed origin labels and different qualities were analysed. Principal component analysis (PCA) and multivariate curve resolution (MCR) showed the chemical distribution of the major compounds (bands around 1170–1210 nm and 1485–1550 nm, associated with fats and fatty acids and water and proteins, respectively) of each marketed origin. Soft independent modelling of class analogies (SIMCA) classified the samples according to their labeling of origin, in a pixel-based and nut-based approach, obtaining 89–98% and 84–100% of correct prediction, respectively. This preliminary study demonstrated that the proposed methodology could be used as a fast, comprehensive and innovative quality control tool (for characterisation and classification) for the pine nut industry. • NIR-HSI was for first-time applied for studying and classifying pine nuts. • It allows studying internal pine nut composition and chemical distribution. • Satisfactory classification models were achieved according to two marketed origins. • This approach shows a comprehensive fast and reliable quality control for pine nuts. • NIR-HSI could enhance pine nut traceability and detection of compositional changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzqlzqlzqlzqlzq完成签到,获得积分10
4秒前
5秒前
含蓄的豪英完成签到,获得积分10
5秒前
Ava应助猪猪女孩采纳,获得10
6秒前
大个应助YJ888采纳,获得10
7秒前
冰魂应助han采纳,获得10
8秒前
9秒前
11秒前
12秒前
科研顺利完成签到,获得积分10
14秒前
BK发布了新的文献求助10
14秒前
15秒前
15秒前
科研通AI5应助noNOno采纳,获得10
17秒前
早日毕业发布了新的文献求助10
17秒前
18秒前
钱多多发布了新的文献求助10
19秒前
昏睡的绍辉完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
19秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
21秒前
21秒前
21秒前
21秒前
21秒前
21秒前
21秒前
22秒前
22秒前
22秒前
净意完成签到,获得积分10
23秒前
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775590
求助须知:如何正确求助?哪些是违规求助? 3321201
关于积分的说明 10203985
捐赠科研通 3036025
什么是DOI,文献DOI怎么找? 1665925
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766