Feasibility of a rapid and non-destructive methodology for the study and discrimination of pine nuts using near-infrared hyperspectral analysis and chemometrics

化学计量学 高光谱成像 近红外光谱 环境科学 计算机科学 模式识别(心理学) 遥感 化学 色谱法 人工智能 光学 地质学 物理
作者
Rocio Ríos‐Reina,Raquel M. Callejón,José Manuel Amigo
出处
期刊:Food Control [Elsevier]
卷期号:130: 108365-108365 被引量:27
标识
DOI:10.1016/j.foodcont.2021.108365
摘要

Spanish pine nut is highly appreciated globally for its aroma and taste. Nevertheless, its market is affected by the growing presence of Chinese pine nuts, entailing mislabeling and counterfeits. In this study, near-infrared hyperspectral imaging (940–1625 nm) coupled to chemometrics, was applied, for the first time, to perform a spectral study (identification of chemical distribution and composition) of commercial pine nuts labeled on their package as Spanish and Chinese and to develop a single class-modelling classification model. Sixty-three pine nuts from both marketed origin labels and different qualities were analysed. Principal component analysis (PCA) and multivariate curve resolution (MCR) showed the chemical distribution of the major compounds (bands around 1170–1210 nm and 1485–1550 nm, associated with fats and fatty acids and water and proteins, respectively) of each marketed origin. Soft independent modelling of class analogies (SIMCA) classified the samples according to their labeling of origin, in a pixel-based and nut-based approach, obtaining 89–98% and 84–100% of correct prediction, respectively. This preliminary study demonstrated that the proposed methodology could be used as a fast, comprehensive and innovative quality control tool (for characterisation and classification) for the pine nut industry. • NIR-HSI was for first-time applied for studying and classifying pine nuts. • It allows studying internal pine nut composition and chemical distribution. • Satisfactory classification models were achieved according to two marketed origins. • This approach shows a comprehensive fast and reliable quality control for pine nuts. • NIR-HSI could enhance pine nut traceability and detection of compositional changes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理觅儿完成签到,获得积分10
刚刚
北栀完成签到,获得积分20
1秒前
xiao完成签到,获得积分10
1秒前
xdm完成签到,获得积分10
1秒前
静jj完成签到,获得积分10
1秒前
2秒前
八百标兵完成签到,获得积分10
2秒前
汉堡包应助复杂怜容采纳,获得10
3秒前
curry举报yuannju求助涉嫌违规
3秒前
薛定谔的猫完成签到,获得积分10
3秒前
zhang005on发布了新的文献求助10
4秒前
Hanoi347发布了新的文献求助10
4秒前
4秒前
gqp完成签到,获得积分0
5秒前
Wang完成签到,获得积分10
5秒前
淡淡智宸完成签到,获得积分10
5秒前
八九完成签到,获得积分10
5秒前
HAL9000完成签到,获得积分10
5秒前
丘比特应助行云流水采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
liu完成签到 ,获得积分10
6秒前
7秒前
chaochao1234完成签到,获得积分20
7秒前
CipherSage应助眼睛大的从雪采纳,获得10
7秒前
7秒前
笑点低的芷巧完成签到,获得积分10
8秒前
bkagyin应助Hua采纳,获得10
8秒前
8秒前
淡淡智宸发布了新的文献求助10
9秒前
情怀应助幸福的聋五采纳,获得10
9秒前
10秒前
干净冰露完成签到,获得积分10
10秒前
11秒前
chaos完成签到 ,获得积分10
12秒前
zzer完成签到,获得积分10
13秒前
NexusExplorer应助zzy采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
gwh68964402gwh完成签到,获得积分10
13秒前
长生发布了新的文献求助10
13秒前
情怀应助阿尔喷斯少年采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027