Feasibility of a rapid and non-destructive methodology for the study and discrimination of pine nuts using near-infrared hyperspectral analysis and chemometrics

化学计量学 高光谱成像 近红外光谱 环境科学 计算机科学 模式识别(心理学) 遥感 化学 色谱法 人工智能 光学 地质学 物理
作者
Rocio Ríos‐Reina,Raquel M. Callejón,José Manuel Amigo
出处
期刊:Food Control [Elsevier]
卷期号:130: 108365-108365 被引量:27
标识
DOI:10.1016/j.foodcont.2021.108365
摘要

Spanish pine nut is highly appreciated globally for its aroma and taste. Nevertheless, its market is affected by the growing presence of Chinese pine nuts, entailing mislabeling and counterfeits. In this study, near-infrared hyperspectral imaging (940–1625 nm) coupled to chemometrics, was applied, for the first time, to perform a spectral study (identification of chemical distribution and composition) of commercial pine nuts labeled on their package as Spanish and Chinese and to develop a single class-modelling classification model. Sixty-three pine nuts from both marketed origin labels and different qualities were analysed. Principal component analysis (PCA) and multivariate curve resolution (MCR) showed the chemical distribution of the major compounds (bands around 1170–1210 nm and 1485–1550 nm, associated with fats and fatty acids and water and proteins, respectively) of each marketed origin. Soft independent modelling of class analogies (SIMCA) classified the samples according to their labeling of origin, in a pixel-based and nut-based approach, obtaining 89–98% and 84–100% of correct prediction, respectively. This preliminary study demonstrated that the proposed methodology could be used as a fast, comprehensive and innovative quality control tool (for characterisation and classification) for the pine nut industry. • NIR-HSI was for first-time applied for studying and classifying pine nuts. • It allows studying internal pine nut composition and chemical distribution. • Satisfactory classification models were achieved according to two marketed origins. • This approach shows a comprehensive fast and reliable quality control for pine nuts. • NIR-HSI could enhance pine nut traceability and detection of compositional changes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
臭妹妹发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
juphen2发布了新的文献求助10
3秒前
垃圾筐发布了新的文献求助10
3秒前
张茜涵发布了新的文献求助10
3秒前
4秒前
眼睛大怜容完成签到 ,获得积分10
4秒前
南寻完成签到,获得积分10
4秒前
科研通AI6应助lll采纳,获得10
5秒前
英姑应助qiuhai采纳,获得10
5秒前
李爱国应助濮阳香采纳,获得10
5秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
feliciaaa完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
汉堡包应助洛伊儿采纳,获得10
13秒前
万能图书馆应助wang采纳,获得10
15秒前
qiuhai发布了新的文献求助10
16秒前
17秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
科研通AI6应助lizhiqian2024采纳,获得10
19秒前
blue完成签到 ,获得积分10
19秒前
领导范儿应助lizhiqian2024采纳,获得10
20秒前
20秒前
Joey完成签到,获得积分10
20秒前
整齐墨镜应助汤哈哈哈哈采纳,获得10
21秒前
Akim应助汤哈哈哈哈采纳,获得10
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
阿玖完成签到 ,获得积分10
22秒前
超级的金毛完成签到,获得积分10
22秒前
1073980795发布了新的文献求助10
22秒前
22秒前
Yep0672完成签到,获得积分10
23秒前
南桥枝完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666290
求助须知:如何正确求助?哪些是违规求助? 4880818
关于积分的说明 15116881
捐赠科研通 4825362
什么是DOI,文献DOI怎么找? 2583279
邀请新用户注册赠送积分活动 1537446
关于科研通互助平台的介绍 1495652