Feasibility of a rapid and non-destructive methodology for the study and discrimination of pine nuts using near-infrared hyperspectral analysis and chemometrics

化学计量学 高光谱成像 近红外光谱 环境科学 计算机科学 模式识别(心理学) 遥感 化学 色谱法 人工智能 光学 地质学 物理
作者
Rocio Ríos‐Reina,Raquel M. Callejón,José Manuel Amigo
出处
期刊:Food Control [Elsevier]
卷期号:130: 108365-108365 被引量:27
标识
DOI:10.1016/j.foodcont.2021.108365
摘要

Spanish pine nut is highly appreciated globally for its aroma and taste. Nevertheless, its market is affected by the growing presence of Chinese pine nuts, entailing mislabeling and counterfeits. In this study, near-infrared hyperspectral imaging (940–1625 nm) coupled to chemometrics, was applied, for the first time, to perform a spectral study (identification of chemical distribution and composition) of commercial pine nuts labeled on their package as Spanish and Chinese and to develop a single class-modelling classification model. Sixty-three pine nuts from both marketed origin labels and different qualities were analysed. Principal component analysis (PCA) and multivariate curve resolution (MCR) showed the chemical distribution of the major compounds (bands around 1170–1210 nm and 1485–1550 nm, associated with fats and fatty acids and water and proteins, respectively) of each marketed origin. Soft independent modelling of class analogies (SIMCA) classified the samples according to their labeling of origin, in a pixel-based and nut-based approach, obtaining 89–98% and 84–100% of correct prediction, respectively. This preliminary study demonstrated that the proposed methodology could be used as a fast, comprehensive and innovative quality control tool (for characterisation and classification) for the pine nut industry. • NIR-HSI was for first-time applied for studying and classifying pine nuts. • It allows studying internal pine nut composition and chemical distribution. • Satisfactory classification models were achieved according to two marketed origins. • This approach shows a comprehensive fast and reliable quality control for pine nuts. • NIR-HSI could enhance pine nut traceability and detection of compositional changes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
王加通完成签到,获得积分10
1秒前
鲤鱼紫山完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
Hello应助潇洒的怜蕾采纳,获得10
3秒前
3秒前
酷波er应助无情墨镜采纳,获得10
3秒前
小小大人物完成签到,获得积分10
3秒前
Vermouth完成签到,获得积分10
3秒前
年轻亦竹完成签到,获得积分10
4秒前
5秒前
FashionBoy应助大胆的向松采纳,获得10
5秒前
5秒前
情怀应助xh采纳,获得10
5秒前
Aurora发布了新的文献求助10
5秒前
6秒前
木子完成签到,获得积分10
6秒前
6秒前
mokesun完成签到,获得积分10
7秒前
Aragon完成签到,获得积分10
7秒前
Duqianying发布了新的文献求助10
7秒前
罗河伟发布了新的文献求助10
7秒前
ZZG完成签到,获得积分10
7秒前
小可发布了新的文献求助10
7秒前
8秒前
今后应助Xxx采纳,获得10
8秒前
田様应助小白采纳,获得10
9秒前
10秒前
10秒前
10秒前
星辰大海应助信马由缰采纳,获得10
10秒前
10秒前
10秒前
小白完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759267
求助须知:如何正确求助?哪些是违规求助? 5519385
关于积分的说明 15393391
捐赠科研通 4896354
什么是DOI,文献DOI怎么找? 2633654
邀请新用户注册赠送积分活动 1581682
关于科研通互助平台的介绍 1537219