Feasibility of a rapid and non-destructive methodology for the study and discrimination of pine nuts using near-infrared hyperspectral analysis and chemometrics

化学计量学 高光谱成像 近红外光谱 环境科学 计算机科学 模式识别(心理学) 遥感 化学 色谱法 人工智能 光学 地质学 物理
作者
Rocio Ríos‐Reina,Raquel M. Callejón,José Manuel Amigo
出处
期刊:Food Control [Elsevier]
卷期号:130: 108365-108365 被引量:27
标识
DOI:10.1016/j.foodcont.2021.108365
摘要

Spanish pine nut is highly appreciated globally for its aroma and taste. Nevertheless, its market is affected by the growing presence of Chinese pine nuts, entailing mislabeling and counterfeits. In this study, near-infrared hyperspectral imaging (940–1625 nm) coupled to chemometrics, was applied, for the first time, to perform a spectral study (identification of chemical distribution and composition) of commercial pine nuts labeled on their package as Spanish and Chinese and to develop a single class-modelling classification model. Sixty-three pine nuts from both marketed origin labels and different qualities were analysed. Principal component analysis (PCA) and multivariate curve resolution (MCR) showed the chemical distribution of the major compounds (bands around 1170–1210 nm and 1485–1550 nm, associated with fats and fatty acids and water and proteins, respectively) of each marketed origin. Soft independent modelling of class analogies (SIMCA) classified the samples according to their labeling of origin, in a pixel-based and nut-based approach, obtaining 89–98% and 84–100% of correct prediction, respectively. This preliminary study demonstrated that the proposed methodology could be used as a fast, comprehensive and innovative quality control tool (for characterisation and classification) for the pine nut industry. • NIR-HSI was for first-time applied for studying and classifying pine nuts. • It allows studying internal pine nut composition and chemical distribution. • Satisfactory classification models were achieved according to two marketed origins. • This approach shows a comprehensive fast and reliable quality control for pine nuts. • NIR-HSI could enhance pine nut traceability and detection of compositional changes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
量子星尘发布了新的文献求助30
1秒前
1秒前
星业辰发布了新的文献求助30
2秒前
WC241002292发布了新的文献求助10
2秒前
2秒前
猜对了就告诉你完成签到,获得积分10
2秒前
Xt发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
娜娜酱油发布了新的文献求助10
4秒前
jieshun_zhang发布了新的文献求助10
4秒前
刘大大发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
SciGPT应助吃不饱星球球长采纳,获得10
5秒前
dgqz发布了新的文献求助10
5秒前
深情安青应助迅速的香露采纳,获得10
6秒前
liyingbo发布了新的文献求助10
6秒前
6秒前
7秒前
weixiaoyu发布了新的文献求助10
7秒前
8秒前
嘻哈哈发布了新的文献求助10
8秒前
想吃螺蛳粉完成签到,获得积分10
9秒前
10秒前
成就的山水完成签到,获得积分10
10秒前
甜蜜的马里奥完成签到,获得积分10
10秒前
ericzhouxx发布了新的文献求助10
11秒前
杜雨柔完成签到 ,获得积分10
11秒前
sunny发布了新的文献求助10
11秒前
科研通AI6.1应助复杂从梦采纳,获得10
12秒前
xuanxuan发布了新的文献求助10
13秒前
Mryuan发布了新的文献求助10
14秒前
14秒前
小汪发布了新的文献求助10
16秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743234
求助须知:如何正确求助?哪些是违规求助? 5413106
关于积分的说明 15347071
捐赠科研通 4884098
什么是DOI,文献DOI怎么找? 2625582
邀请新用户注册赠送积分活动 1574482
关于科研通互助平台的介绍 1531345