Maximizing Metal–Support Interactions in Pt/Co3O4 Nanocages to Simultaneously Boost Hydrogen Production Activity and Durability

纳米笼 催化作用 材料科学 氨硼烷 X射线光电子能谱 离解(化学) 化学工程 制氢 解吸 金属 吸附 紫外光电子能谱 密度泛函理论 物理化学 化学 计算化学 有机化学 冶金 工程类
作者
Mei Li,Shengbo Zhang,Jiankang Zhao,Hua Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (48): 57362-57371 被引量:29
标识
DOI:10.1021/acsami.1c18403
摘要

Catalytic hydrolysis of ammonia borane (AB) provides an effective way to generate pure H2 at ambient temperature for fuel cells. Pt-based catalysts usually exhibit great initial activity toward this reaction but deactivate quickly. Here, we report that the metal-support interactions in Pt/Co3O4 nanocages can simultaneously accelerate the H2 generation and enhance the catalyst's stability. The Pt/Co3O4 catalyst is made for the first time by embedding Pt clusters (∼1.2 nm) in a high-surface-area Co3O4 nanocage to maximize the metal-support interface. The turnover frequency of the Pt/Co3O4 catalyst is about nine times higher than that of commercial Pt/C and outperforms almost all other Pt-based catalysts. X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, in situ spectroscopy, and density functional theory calculations suggest that the Co3O4 nanocages with rich oxygen vacancies facilitate the adsorption and dissociation of H2O to give electropositive H (Hδ+), while the in situ embedded Pt clusters can accelerate the formation of electronegative H (Hδ-) from AB. Subsequently, the Hδ+ and Hδ- spill over to the abundant interfacial sites and bond into H2. In addition to this dual-function synergy effect, the strong metal-support electronic interactions between Co3O4 and Pt benefit the desorption of poisonous B-containing byproducts from Pt sites. This effect together with cluster anchoring leads to a fivefold enhancement in durability compared to commercial Pt/C. The metal-support interactions revealed in this study provide more options for catalyst design toward facile H2 production from chemical hydrogen storage materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nininidoc完成签到,获得积分10
刚刚
123号发布了新的文献求助10
2秒前
Chen发布了新的文献求助10
3秒前
汉堡包应助caoyy采纳,获得10
3秒前
阳阳发布了新的文献求助10
3秒前
田所浩二完成签到 ,获得积分10
3秒前
3秒前
华仔应助奶糖采纳,获得30
4秒前
动力小滋完成签到,获得积分10
4秒前
ding应助瑶一瑶采纳,获得10
7秒前
fmwang完成签到,获得积分10
8秒前
万能图书馆应助Zxc采纳,获得10
8秒前
Rainbow完成签到,获得积分10
8秒前
小小郭完成签到 ,获得积分10
8秒前
10秒前
Orange应助务实的犀牛采纳,获得10
10秒前
追寻飞风完成签到,获得积分10
10秒前
wenli完成签到,获得积分10
11秒前
11秒前
12秒前
Schmoo完成签到,获得积分10
13秒前
15秒前
圆圆的脑袋应助涛浪采纳,获得10
16秒前
隐形曼青应助皮皮桂采纳,获得10
17秒前
凝子老师完成签到,获得积分10
17秒前
奶糖发布了新的文献求助30
17秒前
TORCH完成签到 ,获得积分10
19秒前
李健的小迷弟应助lin采纳,获得10
19秒前
19秒前
20秒前
TT发布了新的文献求助10
20秒前
奶糖完成签到,获得积分10
23秒前
丘比特应助浪迹天涯采纳,获得10
24秒前
26秒前
26秒前
虚幻白玉发布了新的文献求助10
27秒前
清客完成签到 ,获得积分10
27秒前
传奇3应助阳阳采纳,获得10
27秒前
29秒前
皮皮桂发布了新的文献求助10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849