Investigation on the ignition delay prediction model of multi-component surrogates based on back propagation (BP) neural network

人工神经网络 均方误差 点火系统 粒子群优化 摩尔分数 反向传播 计算 分数(化学) 计算机科学 组分(热力学) 算法 数学 生物系统 人工智能 统计 化学 热力学 物理 有机化学 生物
作者
Yanqing Cui,Haifeng Liu,Qianlong Wang,Zunqing Zheng,Hu Wang,Zongyu Yue,Zhenyang Ming,Mingsheng Wen,Lei Feng,Mingfa Yao
出处
期刊:Combustion and Flame [Elsevier BV]
卷期号:237: 111852-111852 被引量:66
标识
DOI:10.1016/j.combustflame.2021.111852
摘要

The ignition delay prediction model of three-component surrogates was established based on the back propagation (BP) neural network. The ambient temperature, ambient pressure, molar fraction of n-heptane, iso-octane and toluene were utilized as the input parameters. The ignition delay was utilized as the output parameter. The training and validation set only contained the 0-D simulation ignition delay of single- and two-component surrogates. But the trained BP neural network also showed a strong predictive ability towards the ignition delay of three component toluene primary reference fuel (TPRF) surrogates. Results show that the BP neural network with two hidden layers performs better than that with single hidden layer. With the optimization of genetic algorithm (GA) and particle swarm optimization (PSO) algorithm, the correlation coefficient is higher than 0.9996. The mean relative error (MRE) and the mean square error (MSE) are also maintained at a low level. The computational costs of 0-D simulation and BP neural network methods are compared. In 0-D simulation, the computational time of one case is 28 s. When the BP neural network is utilized, the computational time of 176 cases is just 3.2 s, which shows a significant improvement in the computation time. Through the mean impact value (MIV) analysis, the significance of each input variable to the output results is investigated. The input parameters of ambient temperature and molar fraction of iso-octane obtain the highest and lowest absolute value of MIV, respectively, indicating the major and minor effects on the ignition delay. Based on the predicted ignition delay of three-component TPRF surrogates, the research octane number (RON) and motor octane number (MON) can also be accurately predicted with the maximum deviance no more than 3 units. For real fuels of fuels for advanced combustion engines (FACE) gasolines, such as FACE A and FACE C gasolines, the surrogate fuel which has the same ignition delay at the specific pressure and temperature can be determined through the construction of the ignition delay look-up table of TPRF surrogates by the BP neural network. Following this method, the ignition delay of the real fuels can be matched accurately and the molar fraction of each component of the corresponding TPRF surrogates can also be acquired.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚拟的觅山完成签到,获得积分10
1秒前
Rondab应助李琦采纳,获得30
2秒前
黄瓜双耳拌腐竹完成签到,获得积分10
2秒前
zby发布了新的文献求助10
2秒前
Rondab应助ljc采纳,获得10
3秒前
4秒前
ranjeah完成签到 ,获得积分10
4秒前
5秒前
层积云关注了科研通微信公众号
7秒前
7秒前
8秒前
9秒前
hushidi发布了新的文献求助10
11秒前
胖头鱼完成签到,获得积分10
13秒前
车厘子发布了新的文献求助10
14秒前
Akim应助研究生吗喽采纳,获得10
15秒前
花椒小透明完成签到,获得积分20
16秒前
wangqing发布了新的文献求助10
17秒前
小王发布了新的文献求助10
20秒前
21秒前
22秒前
桐桐应助HonamC采纳,获得10
24秒前
橙浅完成签到,获得积分10
25秒前
炙热莫言完成签到,获得积分20
25秒前
ling_lz发布了新的文献求助10
26秒前
我是老大应助超人采纳,获得10
28秒前
28秒前
zhangyu应助三毛采纳,获得10
28秒前
CipherSage应助郭郭采纳,获得10
29秒前
炙热莫言发布了新的文献求助20
30秒前
淼吉发布了新的文献求助10
30秒前
30秒前
lvxinyan完成签到,获得积分10
31秒前
32秒前
33秒前
归尘发布了新的文献求助10
34秒前
等待的夜香完成签到,获得积分10
36秒前
Chimmy发布了新的文献求助10
37秒前
YAO发布了新的文献求助10
37秒前
water应助薛定谔的猫采纳,获得10
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712