Investigation on the ignition delay prediction model of multi-component surrogates based on back propagation (BP) neural network

人工神经网络 均方误差 点火系统 粒子群优化 摩尔分数 反向传播 计算 分数(化学) 计算机科学 组分(热力学) 算法 数学 生物系统 人工智能 统计 化学 热力学 物理 有机化学 生物
作者
Yanqing Cui,Haifeng Liu,Qianlong Wang,Zunqing Zheng,Hu Wang,Zongyu Yue,Zhenyang Ming,Mingsheng Wen,Lei Feng,Mingfa Yao
出处
期刊:Combustion and Flame [Elsevier]
卷期号:237: 111852-111852 被引量:66
标识
DOI:10.1016/j.combustflame.2021.111852
摘要

The ignition delay prediction model of three-component surrogates was established based on the back propagation (BP) neural network. The ambient temperature, ambient pressure, molar fraction of n-heptane, iso-octane and toluene were utilized as the input parameters. The ignition delay was utilized as the output parameter. The training and validation set only contained the 0-D simulation ignition delay of single- and two-component surrogates. But the trained BP neural network also showed a strong predictive ability towards the ignition delay of three component toluene primary reference fuel (TPRF) surrogates. Results show that the BP neural network with two hidden layers performs better than that with single hidden layer. With the optimization of genetic algorithm (GA) and particle swarm optimization (PSO) algorithm, the correlation coefficient is higher than 0.9996. The mean relative error (MRE) and the mean square error (MSE) are also maintained at a low level. The computational costs of 0-D simulation and BP neural network methods are compared. In 0-D simulation, the computational time of one case is 28 s. When the BP neural network is utilized, the computational time of 176 cases is just 3.2 s, which shows a significant improvement in the computation time. Through the mean impact value (MIV) analysis, the significance of each input variable to the output results is investigated. The input parameters of ambient temperature and molar fraction of iso-octane obtain the highest and lowest absolute value of MIV, respectively, indicating the major and minor effects on the ignition delay. Based on the predicted ignition delay of three-component TPRF surrogates, the research octane number (RON) and motor octane number (MON) can also be accurately predicted with the maximum deviance no more than 3 units. For real fuels of fuels for advanced combustion engines (FACE) gasolines, such as FACE A and FACE C gasolines, the surrogate fuel which has the same ignition delay at the specific pressure and temperature can be determined through the construction of the ignition delay look-up table of TPRF surrogates by the BP neural network. Following this method, the ignition delay of the real fuels can be matched accurately and the molar fraction of each component of the corresponding TPRF surrogates can also be acquired.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
费老三发布了新的文献求助30
刚刚
华仔应助chenjyuu采纳,获得10
刚刚
刚刚
最最最发布了新的文献求助10
刚刚
刚刚
Tuesday完成签到 ,获得积分10
1秒前
1秒前
2秒前
阿毛发布了新的文献求助10
3秒前
4秒前
情怀应助灵巧荆采纳,获得10
4秒前
Ll发布了新的文献求助10
4秒前
Peter发布了新的文献求助30
5秒前
5秒前
6秒前
科研韭菜发布了新的文献求助10
6秒前
科研通AI5应助爱学习采纳,获得10
6秒前
科研通AI5应助跳跃的太阳采纳,获得10
6秒前
苏尔琳诺完成签到,获得积分10
6秒前
科研通AI5应助a1oft采纳,获得10
7秒前
7秒前
关关过完成签到,获得积分10
7秒前
呢不辣完成签到,获得积分10
7秒前
7秒前
shi hui应助陈博士采纳,获得10
7秒前
7秒前
糖糖关注了科研通微信公众号
8秒前
8秒前
小恶于完成签到 ,获得积分10
8秒前
科研通AI2S应助落晨采纳,获得10
9秒前
9秒前
10秒前
半颗橙子发布了新的文献求助10
10秒前
小可爱完成签到 ,获得积分10
10秒前
11秒前
12秒前
12秒前
Jiangnj发布了新的文献求助30
12秒前
samantha完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762