亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Investigation on the ignition delay prediction model of multi-component surrogates based on back propagation (BP) neural network

人工神经网络 均方误差 点火系统 粒子群优化 摩尔分数 反向传播 计算 分数(化学) 计算机科学 组分(热力学) 算法 数学 生物系统 人工智能 统计 化学 热力学 物理 有机化学 生物
作者
Yanqing Cui,Haifeng Liu,Qianlong Wang,Zunqing Zheng,Hu Wang,Zongyu Yue,Zhenyang Ming,Mingsheng Wen,Lei Feng,Mingfa Yao
出处
期刊:Combustion and Flame [Elsevier]
卷期号:237: 111852-111852 被引量:66
标识
DOI:10.1016/j.combustflame.2021.111852
摘要

The ignition delay prediction model of three-component surrogates was established based on the back propagation (BP) neural network. The ambient temperature, ambient pressure, molar fraction of n-heptane, iso-octane and toluene were utilized as the input parameters. The ignition delay was utilized as the output parameter. The training and validation set only contained the 0-D simulation ignition delay of single- and two-component surrogates. But the trained BP neural network also showed a strong predictive ability towards the ignition delay of three component toluene primary reference fuel (TPRF) surrogates. Results show that the BP neural network with two hidden layers performs better than that with single hidden layer. With the optimization of genetic algorithm (GA) and particle swarm optimization (PSO) algorithm, the correlation coefficient is higher than 0.9996. The mean relative error (MRE) and the mean square error (MSE) are also maintained at a low level. The computational costs of 0-D simulation and BP neural network methods are compared. In 0-D simulation, the computational time of one case is 28 s. When the BP neural network is utilized, the computational time of 176 cases is just 3.2 s, which shows a significant improvement in the computation time. Through the mean impact value (MIV) analysis, the significance of each input variable to the output results is investigated. The input parameters of ambient temperature and molar fraction of iso-octane obtain the highest and lowest absolute value of MIV, respectively, indicating the major and minor effects on the ignition delay. Based on the predicted ignition delay of three-component TPRF surrogates, the research octane number (RON) and motor octane number (MON) can also be accurately predicted with the maximum deviance no more than 3 units. For real fuels of fuels for advanced combustion engines (FACE) gasolines, such as FACE A and FACE C gasolines, the surrogate fuel which has the same ignition delay at the specific pressure and temperature can be determined through the construction of the ignition delay look-up table of TPRF surrogates by the BP neural network. Following this method, the ignition delay of the real fuels can be matched accurately and the molar fraction of each component of the corresponding TPRF surrogates can also be acquired.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助读书的时候采纳,获得10
17秒前
JodieZhu完成签到,获得积分10
20秒前
嘻嘻哈哈发布了新的文献求助10
44秒前
46秒前
wz完成签到,获得积分10
47秒前
JamesPei应助manjusaka采纳,获得10
1分钟前
bkagyin应助读书的时候采纳,获得10
1分钟前
1分钟前
manjusaka发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
vitamin完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
嘻嘻哈哈发布了新的文献求助10
2分钟前
2分钟前
2分钟前
大模型应助读书的时候采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
刻苦的艳发布了新的文献求助10
4分钟前
酷波er应助刻苦的艳采纳,获得30
4分钟前
4分钟前
4分钟前
果酱完成签到,获得积分10
4分钟前
5分钟前
娟子完成签到,获得积分10
5分钟前
wanci应助读书的时候采纳,获得10
5分钟前
5分钟前
5分钟前
嘻嘻哈哈发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
嘻嘻哈哈发布了新的文献求助10
6分钟前
汉堡包应助读书的时候采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732400
求助须知:如何正确求助?哪些是违规求助? 5338949
关于积分的说明 15322212
捐赠科研通 4877990
什么是DOI,文献DOI怎么找? 2620796
邀请新用户注册赠送积分活动 1570000
关于科研通互助平台的介绍 1526672