亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Drone 3D Building Reconstruction Method

无人机 计算机科学 人工智能 计算机视觉 过程(计算) 集合(抽象数据类型) RGB颜色模型 同时定位和映射 实时计算 机器人 移动机器人 遗传学 生物 操作系统 程序设计语言
作者
Antón Filatov,Mark Zaslavskiy,Kirill Krinkin
出处
期刊:Mathematics [MDPI AG]
卷期号:9 (23): 3033-3033 被引量:3
标识
DOI:10.3390/math9233033
摘要

In the recent decade, the rapid development of drone technologies has made many spatial problems easier to solve, including the problem of 3D reconstruction of large objects. A review of existing solutions has shown that most of the works lack the autonomy of drones because of nonscalable mapping techniques. This paper presents a method for centralized multi-drone 3D reconstruction, which allows performing a data capturing process autonomously and requires drones equipped only with an RGB camera. The essence of the method is a multiagent approach—the control center performs the workload distribution evenly and independently for all drones, allowing simultaneous flights without a high risk of collision. The center continuously receives RGB data from drones and performs each drone localization (using visual odometry estimations) and rough online mapping of the environment (using image descriptors for estimating the distance to the building). The method relies on a set of several user-defined parameters, which allows the tuning of the method for different task-specific requirements such as the number of drones, 3D model detalization, data capturing time, and energy consumption. By numerical experiments, it is shown that method parameters can be estimated by performing a set of computations requiring characteristics of drones and the building that are simple to obtain. Method performance was evaluated by an experiment with virtual building and emulated drone sensors. Experimental evaluation showed that the precision of the chosen algorithms for online localization and mapping is enough to perform simultaneous flights and the amount of captured RGB data is enough for further reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Echopotter完成签到,获得积分10
17秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
1分钟前
picapica668发布了新的文献求助10
1分钟前
1分钟前
picapica668完成签到,获得积分10
1分钟前
1分钟前
1分钟前
luckss发布了新的文献求助10
1分钟前
ceeray23应助pan采纳,获得10
2分钟前
忘忧Aquarius完成签到,获得积分10
2分钟前
2分钟前
藤椒辣鱼应助科研通管家采纳,获得10
2分钟前
3分钟前
Archers完成签到 ,获得积分10
3分钟前
4分钟前
爱心完成签到 ,获得积分10
4分钟前
藤椒辣鱼应助科研通管家采纳,获得10
4分钟前
藤椒辣鱼应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得150
4分钟前
4分钟前
4分钟前
5分钟前
辣姜发布了新的文献求助10
5分钟前
5分钟前
5分钟前
榜一大哥的负担完成签到 ,获得积分10
5分钟前
back you up完成签到,获得积分10
5分钟前
edc关闭了edc文献求助
5分钟前
6分钟前
6分钟前
开心叫兽完成签到 ,获得积分10
6分钟前
Crisp发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
藤椒辣鱼应助科研通管家采纳,获得10
6分钟前
英姑应助科研通管家采纳,获得10
6分钟前
yunxiao完成签到 ,获得积分10
6分钟前
辣姜完成签到,获得积分10
6分钟前
6分钟前
lanxinge完成签到 ,获得积分10
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445140
求助须知:如何正确求助?哪些是违规求助? 3041131
关于积分的说明 8983977
捐赠科研通 2729747
什么是DOI,文献DOI怎么找? 1497141
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689697