Multi-Drone 3D Building Reconstruction Method

无人机 计算机科学 人工智能 计算机视觉 过程(计算) 集合(抽象数据类型) RGB颜色模型 同时定位和映射 实时计算 机器人 移动机器人 遗传学 生物 操作系统 程序设计语言
作者
Antón Filatov,Mark Zaslavskiy,Kirill Krinkin
出处
期刊:Mathematics [MDPI AG]
卷期号:9 (23): 3033-3033 被引量:3
标识
DOI:10.3390/math9233033
摘要

In the recent decade, the rapid development of drone technologies has made many spatial problems easier to solve, including the problem of 3D reconstruction of large objects. A review of existing solutions has shown that most of the works lack the autonomy of drones because of nonscalable mapping techniques. This paper presents a method for centralized multi-drone 3D reconstruction, which allows performing a data capturing process autonomously and requires drones equipped only with an RGB camera. The essence of the method is a multiagent approach—the control center performs the workload distribution evenly and independently for all drones, allowing simultaneous flights without a high risk of collision. The center continuously receives RGB data from drones and performs each drone localization (using visual odometry estimations) and rough online mapping of the environment (using image descriptors for estimating the distance to the building). The method relies on a set of several user-defined parameters, which allows the tuning of the method for different task-specific requirements such as the number of drones, 3D model detalization, data capturing time, and energy consumption. By numerical experiments, it is shown that method parameters can be estimated by performing a set of computations requiring characteristics of drones and the building that are simple to obtain. Method performance was evaluated by an experiment with virtual building and emulated drone sensors. Experimental evaluation showed that the precision of the chosen algorithms for online localization and mapping is enough to perform simultaneous flights and the amount of captured RGB data is enough for further reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
侃侃完成签到,获得积分10
刚刚
111完成签到,获得积分10
刚刚
ws556发布了新的文献求助10
刚刚
李_小_八完成签到,获得积分10
刚刚
1秒前
1秒前
duckspy完成签到 ,获得积分10
2秒前
三叶草完成签到,获得积分10
3秒前
大王具足虫完成签到,获得积分10
3秒前
lzl008完成签到 ,获得积分10
4秒前
我是老大应助自信的冬日采纳,获得10
4秒前
尼古拉斯大唯完成签到,获得积分10
4秒前
YANA完成签到,获得积分10
5秒前
Star完成签到,获得积分10
5秒前
5秒前
6秒前
无名发布了新的文献求助10
7秒前
pophoo完成签到,获得积分10
7秒前
yuan完成签到 ,获得积分10
7秒前
7秒前
hzhang完成签到,获得积分10
8秒前
喜洋洋完成签到,获得积分20
8秒前
LEE123完成签到,获得积分10
8秒前
piglet发布了新的文献求助10
8秒前
8秒前
祖乐松完成签到,获得积分10
9秒前
lily336699完成签到,获得积分10
9秒前
lzk完成签到,获得积分10
9秒前
10秒前
luluyuan2010完成签到,获得积分10
10秒前
dxz完成签到,获得积分10
11秒前
喜悦香薇完成签到,获得积分10
11秒前
bkagyin应助秀丽笑容采纳,获得10
11秒前
无患子关注了科研通微信公众号
11秒前
guozi完成签到,获得积分10
11秒前
花火易逝完成签到,获得积分10
12秒前
GD88完成签到,获得积分10
12秒前
AimeeLau发布了新的文献求助10
13秒前
Hubery完成签到 ,获得积分10
14秒前
秋澄完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890