A Fast Hybrid Feature Selection Based on Correlation-Guided Clustering and Particle Swarm Optimization for High-Dimensional Data

聚类分析 粒子群优化 特征选择 维数之咒 特征(语言学) 计算机科学 算法 树冠聚类算法 模式识别(心理学) 数学优化 相关聚类 人工智能 数学 语言学 哲学
作者
Xianfang Song,Zhang Yon,Dunwei Gong,Xiao‐Zhi Gao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (9): 9573-9586 被引量:202
标识
DOI:10.1109/tcyb.2021.3061152
摘要

The "curse of dimensionality" and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature selection (FS) problems. This article proposes a new three-phase hybrid FS algorithm based on correlation-guided clustering and particle swarm optimization (PSO) (HFS-C-P) to tackle the above two problems at the same time. To this end, three kinds of FS methods are effectively integrated into the proposed algorithm based on their respective advantages. In the first and second phases, a filter FS method and a feature clustering-based method with low computational cost are designed to reduce the search space used by the third phase. After that, the third phase applies oneself to finding an optimal feature subset by using an evolutionary algorithm with the global searchability. Moreover, a symmetric uncertainty-based feature deletion method, a fast correlation-guided feature clustering strategy, and an improved integer PSO are developed to improve the performance of the three phases, respectively. Finally, the proposed algorithm is validated on 18 publicly available real-world datasets in comparison with nine FS algorithms. Experimental results show that the proposed algorithm can obtain a good feature subset with the lowest computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄蛋黄完成签到,获得积分10
刚刚
1秒前
Cloud驳回了Akim应助
1秒前
无尘发布了新的文献求助10
3秒前
4秒前
6秒前
坚强热狗发布了新的文献求助10
9秒前
10秒前
ljcznhy完成签到,获得积分10
11秒前
叡叡发布了新的文献求助10
13秒前
15秒前
8R60d8应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
8R60d8应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
16秒前
JamesPei应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
Singularity应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
Singularity应助科研通管家采纳,获得10
17秒前
17秒前
Singularity应助科研通管家采纳,获得10
17秒前
pitto完成签到,获得积分10
21秒前
bkagyin应助小奕采纳,获得10
22秒前
25秒前
苏晓醒完成签到,获得积分10
26秒前
活泼红牛完成签到 ,获得积分20
28秒前
爆米花应助77采纳,获得10
29秒前
阿士大夫完成签到 ,获得积分10
30秒前
文献下载中完成签到,获得积分10
31秒前
32秒前
SciGPT应助文献下载中采纳,获得10
35秒前
小二郎应助SR4采纳,获得10
37秒前
白色风车发布了新的文献求助10
38秒前
38秒前
小杨完成签到,获得积分10
38秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161827
求助须知:如何正确求助?哪些是违规求助? 2813059
关于积分的说明 7898411
捐赠科研通 2472080
什么是DOI,文献DOI怎么找? 1316331
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129