A Fast Hybrid Feature Selection Based on Correlation-Guided Clustering and Particle Swarm Optimization for High-Dimensional Data

聚类分析 粒子群优化 特征选择 维数之咒 特征(语言学) 计算机科学 算法 树冠聚类算法 模式识别(心理学) 数学优化 相关聚类 人工智能 数学 语言学 哲学
作者
Xianfang Song,Zhang Yon,Dunwei Gong,Xiao‐Zhi Gao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (9): 9573-9586 被引量:240
标识
DOI:10.1109/tcyb.2021.3061152
摘要

The "curse of dimensionality" and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature selection (FS) problems. This article proposes a new three-phase hybrid FS algorithm based on correlation-guided clustering and particle swarm optimization (PSO) (HFS-C-P) to tackle the above two problems at the same time. To this end, three kinds of FS methods are effectively integrated into the proposed algorithm based on their respective advantages. In the first and second phases, a filter FS method and a feature clustering-based method with low computational cost are designed to reduce the search space used by the third phase. After that, the third phase applies oneself to finding an optimal feature subset by using an evolutionary algorithm with the global searchability. Moreover, a symmetric uncertainty-based feature deletion method, a fast correlation-guided feature clustering strategy, and an improved integer PSO are developed to improve the performance of the three phases, respectively. Finally, the proposed algorithm is validated on 18 publicly available real-world datasets in comparison with nine FS algorithms. Experimental results show that the proposed algorithm can obtain a good feature subset with the lowest computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔梦曼完成签到,获得积分20
刚刚
刚刚
甜甜友容发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
蕊蕊完成签到,获得积分20
2秒前
huqin发布了新的文献求助10
3秒前
3秒前
casset发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
在途中完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
眼睛大雨筠应助坦率的匪采纳,获得50
5秒前
在水一方应助青阳采纳,获得10
5秒前
6秒前
6秒前
静心404完成签到,获得积分10
7秒前
欢喜方盒完成签到,获得积分10
7秒前
sota发布了新的文献求助10
7秒前
日出发布了新的文献求助10
8秒前
沉默士萧完成签到,获得积分10
8秒前
麦客发布了新的文献求助10
9秒前
cooot完成签到,获得积分10
9秒前
9秒前
谭玲慧发布了新的文献求助10
9秒前
yi发布了新的文献求助30
10秒前
10秒前
Yuanyuan发布了新的文献求助10
10秒前
蕊蕊发布了新的文献求助10
10秒前
妥妥酱发布了新的文献求助10
10秒前
11111112222发布了新的文献求助10
10秒前
10秒前
ZZZ完成签到,获得积分10
10秒前
自由过客发布了新的文献求助10
11秒前
太上老君完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958780
求助须知:如何正确求助?哪些是违规求助? 3504977
关于积分的说明 11121403
捐赠科研通 3236362
什么是DOI,文献DOI怎么找? 1788752
邀请新用户注册赠送积分活动 871360
科研通“疑难数据库(出版商)”最低求助积分说明 802707