分解水
过电位
光催化
材料科学
催化作用
光催化分解水
氢
半导体
金属
无机化学
制氢
过渡金属
贵金属
纳米技术
化学
冶金
电化学
物理化学
光电子学
生物化学
电极
有机化学
作者
Yanling Han,Yong Chen,Rongli Fan,Zhaosheng Li,Zhigang Zou
出处
期刊:EcoMat
[Wiley]
日期:2021-03-22
卷期号:3 (3)
被引量:58
摘要
Abstract Hydrogen evolution from water splitting over semiconductors has been considered one of the most promising ways to address energy shortages and environmental pollution. Searching for low‐cost, highly efficient, and durable catalysts is the key to improve the hydrogen production rate. Expensive noble metals, such as Pt and Au, are generally loaded onto semiconductors to promote photocatalytic activity. Metal phosphides are promising candidates to replace noble metals in hydrogen generation via electrocatalytic or photocatalytic water splitting due to their low hydrogen‐producing overpotential, tunable electronic structure, high electrical conductivity, and low price. In this review article, the characteristics and synthetic methods of metal phosphides are briefly introduced, and the development of metal phosphides for electrocatalytic or photocatalytic water splitting is presented. Finally, the challenges and future directions of metal phosphides are discussed. image
科研通智能强力驱动
Strongly Powered by AbleSci AI