Operando Raman Spectroscopy Reveals Cr-Induced-Phase Reconstruction of NiFe and CoFe Oxyhydroxides for Enhanced Electrocatalytic Water Oxidation

拉曼光谱 析氧 材料科学 催化作用 X射线光电子能谱 分解水 电催化剂 无定形固体 电化学 电解水 本体电解 电解质 化学工程 电解 无机化学 化学 电极 物理化学 结晶学 光学 工程类 物理 光催化 生物化学
作者
Xin Bo,Yibing Li,Xianjue Chen,Chuan Zhao
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:32 (10): 4303-4311 被引量:134
标识
DOI:10.1021/acs.chemmater.0c01067
摘要

Nonprecious NiFe and CoFe oxyhydroxides are among the most active materials for oxygen evolution reaction (OER) in basic media. However, the phase separation in these composites during water oxidation remains a critical issue that often results in degradation of electrochemical performance and debate on the mechanism and the active intermediates. In this study, we show that the introduction of Cr can efficiently transform the crystalline multiphase NiFe and CoFe oxides/hydroxides into homogeneous amorphous nanodots with sharply reduced nanoparticle size from tens of nanometers to merely 2–3 nm. Serving as an OER catalyst, the ternary NiFeCr and CoFeCr catalysts exhibit a smaller onset potential of ∼1.51 V vs reversible hydrogen electrode (RHE) and a stable OER performance during long-term water electrolysis. The impact of Cr on the NiFe and CoFe catalysts for OER kinetics was systematically investigated by operando electrochemical Raman spectroscopy. It is found that, for the NiFeCr compound, Cr can promote the generation of a more active β-NiOOH phase than that of the NiFe composite during water oxidation. For the CoFe and CoFeCr systems, the introduction of Cr only disturbs the lattice crystallization. However, active CoOOH is spontaneously present on the surface of the composites upon making contact with KOH electrolyte, even without applying a potential. Thus, Co-based catalysts can easily achieve the "ready-to-serve" state for high-performance water oxidation without preactivation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵明完成签到,获得积分10
刚刚
慕涔完成签到,获得积分10
1秒前
kingwill应助沐风采纳,获得30
1秒前
1秒前
陈龙完成签到,获得积分10
1秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
无花果应助科研通管家采纳,获得10
2秒前
Raymond应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
期刊应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
Raymond应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
科研通AI5应助双勾玉采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
共享精神应助阳光向秋采纳,获得10
3秒前
孙鹏完成签到,获得积分10
4秒前
Orange应助JTB采纳,获得10
4秒前
我是老大应助李子采纳,获得10
4秒前
orixero应助selfevidbet采纳,获得30
4秒前
4秒前
5秒前
5秒前
朴素的清发布了新的文献求助10
5秒前
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762