亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Collaborative Service Placement for Edge Computing in Dense Small Cell Networks

计算机科学 计算机网络 移动边缘计算 云计算 计算卸载 分布式计算 服务器 回程(电信) 服务(商务) 基站 边缘计算 操作系统 经济 经济
作者
Lixing Chen,Cong Shen,Pan Zhou,Jie Xu
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 377-390 被引量:123
标识
DOI:10.1109/tmc.2019.2945956
摘要

Mobile Edge Computing (MEC) pushes computing functionalities away from the centralized cloud to the proximity of data sources, thereby reducing service provision latency and saving backhaul network bandwidth. Although computation offloading for MEC systems has been extensively studied in the literature, service placement is an equally, if not more, important design topic of MEC, yet receives much less attention. Service placement refers to configuring the service platform and storing the related libraries/databases at the edge server, e.g., MEC-enabled Base Station (BS), which enables corresponding computation tasks to be executed. Due to the limited computing resource, the edge server can host only a small number of services and hence which services to host has to be judiciously decided to maximize the system performance. In this paper, we investigate collaborative service placement in MEC-enabled dense small cell networks. An efficient decentralized algorithm, called CSP (Collaborative Service Placement), is proposed where a network of small cell BSs optimize service placement decisions collaboratively to address a number of challenges in MEC systems, including service heterogeneity, spatial demand coupling, and decentralized coordination. CSP is developed based on parallel Gibbs sampling by exploiting the graph coloring on the small cell network. The algorithm significantly improves the time efficiency compared to conventional Gibbs sampling, yet guarantees provable convergence and optimality. CSP is further extended to work with selfish BSs, where BSs are allowed to choose “to cooperate” or “not to cooperate.” We employ coalitional game to investigate the strategic behaviors of selfish BSs and design a coalition formation scheme to form stable BS coalitions using merge-and-split rules. Simulations results show that CSP can effectively reduce edge system operational cost for both cooperative and selfish BSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助枯藤老柳树采纳,获得10
15秒前
21秒前
mwang发布了新的文献求助10
25秒前
29秒前
factor发布了新的文献求助10
35秒前
36秒前
大个应助factor采纳,获得10
40秒前
42秒前
赘婿应助枯藤老柳树采纳,获得10
49秒前
苗苗子子完成签到,获得积分10
52秒前
mwang完成签到,获得积分10
53秒前
1分钟前
1分钟前
2分钟前
2分钟前
3分钟前
3分钟前
桐桐应助秋刀鱼不过期采纳,获得10
3分钟前
隐形曼青应助研友_R2D2采纳,获得10
3分钟前
wanci应助爱撒娇的曼凝采纳,获得10
3分钟前
chen完成签到 ,获得积分10
4分钟前
Wang完成签到 ,获得积分20
4分钟前
赘婿应助天马行空采纳,获得10
4分钟前
8R60d8应助科研通管家采纳,获得10
4分钟前
8R60d8应助科研通管家采纳,获得10
4分钟前
8R60d8应助科研通管家采纳,获得10
4分钟前
8R60d8应助科研通管家采纳,获得10
4分钟前
5分钟前
天马行空完成签到,获得积分20
5分钟前
天马行空发布了新的文献求助10
5分钟前
5分钟前
李健应助枯藤老柳树采纳,获得10
6分钟前
孤独蘑菇完成签到 ,获得积分10
6分钟前
8R60d8应助科研通管家采纳,获得10
6分钟前
8R60d8应助科研通管家采纳,获得10
6分钟前
8R60d8应助科研通管家采纳,获得10
7分钟前
8R60d8应助科研通管家采纳,获得10
7分钟前
7分钟前
快乐小狗发布了新的文献求助30
7分钟前
zoelir729发布了新的文献求助10
7分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787970
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997