已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Collaborative Service Placement for Edge Computing in Dense Small Cell Networks

计算机科学 计算机网络 移动边缘计算 云计算 计算卸载 分布式计算 服务器 回程(电信) 服务(商务) 基站 边缘计算 操作系统 经济 经济
作者
Lixing Chen,Cong Shen,Pan Zhou,Jie Xu
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 377-390 被引量:123
标识
DOI:10.1109/tmc.2019.2945956
摘要

Mobile Edge Computing (MEC) pushes computing functionalities away from the centralized cloud to the proximity of data sources, thereby reducing service provision latency and saving backhaul network bandwidth. Although computation offloading for MEC systems has been extensively studied in the literature, service placement is an equally, if not more, important design topic of MEC, yet receives much less attention. Service placement refers to configuring the service platform and storing the related libraries/databases at the edge server, e.g., MEC-enabled Base Station (BS), which enables corresponding computation tasks to be executed. Due to the limited computing resource, the edge server can host only a small number of services and hence which services to host has to be judiciously decided to maximize the system performance. In this paper, we investigate collaborative service placement in MEC-enabled dense small cell networks. An efficient decentralized algorithm, called CSP (Collaborative Service Placement), is proposed where a network of small cell BSs optimize service placement decisions collaboratively to address a number of challenges in MEC systems, including service heterogeneity, spatial demand coupling, and decentralized coordination. CSP is developed based on parallel Gibbs sampling by exploiting the graph coloring on the small cell network. The algorithm significantly improves the time efficiency compared to conventional Gibbs sampling, yet guarantees provable convergence and optimality. CSP is further extended to work with selfish BSs, where BSs are allowed to choose “to cooperate” or “not to cooperate.” We employ coalitional game to investigate the strategic behaviors of selfish BSs and design a coalition formation scheme to form stable BS coalitions using merge-and-split rules. Simulations results show that CSP can effectively reduce edge system operational cost for both cooperative and selfish BSs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nnn7完成签到,获得积分10
刚刚
Owen应助Wu采纳,获得10
6秒前
wyg1994完成签到,获得积分10
6秒前
6秒前
7秒前
852应助无奈的小虾米采纳,获得10
11秒前
单纯的问安完成签到,获得积分10
11秒前
Hong完成签到,获得积分10
15秒前
沈惠映完成签到 ,获得积分10
16秒前
深情安青应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
18秒前
Benjamin完成签到 ,获得积分10
20秒前
传统的丹雪完成签到 ,获得积分10
20秒前
科研通AI2S应助一只西瓜茶采纳,获得10
22秒前
peeer完成签到,获得积分10
22秒前
Hong发布了新的文献求助100
24秒前
玛琳卡迪马完成签到,获得积分10
26秒前
酒剑仙完成签到,获得积分10
26秒前
ZTLlele完成签到 ,获得积分10
28秒前
荔枝完成签到 ,获得积分10
28秒前
30秒前
从容的火龙果完成签到 ,获得积分10
31秒前
31秒前
超级灰狼完成签到 ,获得积分10
31秒前
无花果应助叮叮当当当采纳,获得30
33秒前
dongdong完成签到,获得积分20
34秒前
Saadiya发布了新的文献求助10
35秒前
复杂焦发布了新的文献求助20
35秒前
38秒前
西西完成签到 ,获得积分10
38秒前
42秒前
少年游发布了新的文献求助10
43秒前
52秒前
早睡早起完成签到 ,获得积分10
53秒前
小二郎应助少年游采纳,获得10
54秒前
Perry完成签到,获得积分0
54秒前
啦啦啦完成签到 ,获得积分10
54秒前
yangbinsci0827完成签到,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616958
求助须知:如何正确求助?哪些是违规求助? 4701288
关于积分的说明 14913198
捐赠科研通 4746999
什么是DOI,文献DOI怎么找? 2549134
邀请新用户注册赠送积分活动 1512284
关于科研通互助平台的介绍 1474049