初值问题
无穷
外稃(植物学)
数学
柯西分布
柯西问题
数学分析
空格(标点符号)
物理
数学物理
纯数学
计算机科学
生态学
禾本科
生物
操作系统
出处
期刊:Discrete and Continuous Dynamical Systems
[American Institute of Mathematical Sciences]
日期:2019-01-01
卷期号:39 (11): 6713-6745
被引量:5
摘要
This paper concerns the Cauchy problem of the two-dimensional density-dependent Boussinesq equations on the whole space $ \mathbb{R}^{2} $ with zero density at infinity. We prove that there exists a unique global strong solution provided the initial density and the initial temperature decay not too slow at infinity. In particular, the initial data can be arbitrarily large and the initial density may contain vacuum states and even have compact support. Moreover, there is no need to require any Cho-Choe-Kim type compatibility conditions. Our proof relies on the delicate weighted estimates and a lemma due to Coifman-Lions-Meyer-Semmes [J. Math. Pures Appl., 72 (1993), pp. 247-286].
科研通智能强力驱动
Strongly Powered by AbleSci AI