A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence–Powered Ultrasound for Improving Clinical Workflow

工作流程 超声波 计算机科学 模态(人机交互) 深度学习 人工智能 医学物理学 机器学习 医学 放射科 数据库
作者
Zeynettin Akkus,Jason Cai,Arunnit Boonrod,Atefeh Zeinoddini,Alexander D. Weston,Kenneth A. Philbrick,Bradley J. Erickson
出处
期刊:Journal of The American College of Radiology [Elsevier BV]
卷期号:16 (9): 1318-1328 被引量:217
标识
DOI:10.1016/j.jacr.2019.06.004
摘要

Ultrasound is the most commonly used imaging modality in clinical practice because it is a nonionizing, low-cost, and portable point-of-care imaging tool that provides real-time images. Artificial intelligence (AI)-powered ultrasound is becoming more mature and getting closer to routine clinical applications in recent times because of an increased need for efficient and objective acquisition and evaluation of ultrasound images. Because ultrasound images involve operator-, patient-, and scanner-dependent variations, the adaptation of classical machine learning methods to clinical applications becomes challenging. With their self-learning ability, deep-learning (DL) methods are able to harness exponentially growing graphics processing unit computing power to identify abstract and complex imaging features. This has given rise to tremendous opportunities such as providing robust and generalizable AI models for improving image acquisition, real-time assessment of image quality, objective diagnosis and detection of diseases, and optimizing ultrasound clinical workflow. In this report, the authors review current DL approaches and research directions in rapidly advancing ultrasound technology and present their outlook on future directions and trends for DL techniques to further improve diagnosis, reduce health care cost, and optimize ultrasound clinical workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
熊大对熊二说熊要有个熊样完成签到,获得积分10
1秒前
嗨好发布了新的文献求助10
1秒前
666应助圆仔采纳,获得10
2秒前
犹豫千儿完成签到,获得积分10
3秒前
赘婿应助Wyt采纳,获得10
3秒前
曹文鹏发布了新的文献求助10
3秒前
nihao完成签到,获得积分20
4秒前
AYQ完成签到,获得积分10
4秒前
不摇头的向日葵完成签到 ,获得积分10
4秒前
an12138完成签到,获得积分10
5秒前
传奇3应助dingjianqiang采纳,获得10
5秒前
科研鸟发布了新的文献求助30
5秒前
Rondab应助dingjianqiang采纳,获得30
5秒前
cm完成签到,获得积分10
6秒前
种田发布了新的文献求助10
7秒前
8秒前
刘旭完成签到,获得积分10
8秒前
大力的尔安关注了科研通微信公众号
9秒前
9秒前
gray2025完成签到,获得积分20
9秒前
Eden完成签到,获得积分0
9秒前
欣喜的成败完成签到,获得积分20
10秒前
12秒前
默默的白开水完成签到 ,获得积分20
12秒前
汉堡包应助qq采纳,获得30
12秒前
12秒前
666应助圆仔采纳,获得10
13秒前
蝶舞天涯完成签到,获得积分10
14秒前
Lucas应助li采纳,获得10
14秒前
孟龙威发布了新的文献求助10
16秒前
Owen应助沉默的凌青采纳,获得10
16秒前
LILKRACHY完成签到 ,获得积分10
17秒前
19秒前
April Mei发布了新的文献求助10
19秒前
wmm20035完成签到,获得积分10
20秒前
斯文败类应助木木水采纳,获得10
21秒前
飞天817完成签到,获得积分10
22秒前
stuckinrain发布了新的文献求助10
23秒前
种田完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421