Association between floods and hospital admissions for schizophrenia in Hefei, China: The lag effects of degrees of floods and time variation

精神分裂症(面向对象编程) 滞后 中国 人口学 泊松回归 大洪水 医学 不利影响 置信区间 环境卫生 地理 人口 精神科 内科学 计算机网络 考古 社会学 计算机科学
作者
Qiannan Wei,Shouxin Zhang,Weizhuo Yi,Rubing Pan,Jiaojiao Gao,Jun Duan,Zihan Xu,Qiang Cheng,Lijun Bai,Yanwu Zhang,Hong Su
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:698: 134179-134179 被引量:17
标识
DOI:10.1016/j.scitotenv.2019.134179
摘要

Schizophrenia is a serious mental disorder, endangering 7.5 million patients in China. Floods, as the adverse consequence of temperature-rise, have a negative influence on mental health. However, the relationship between floods and schizophrenia is still insufficient. This study aimed to quantitative the relationship between floods and the admissions for schizophrenia in Hefei, China. A Poisson generalized linear model (GLM) combining a distributed lag non-linear model (DLNM) was used to quantify the lag effects of floods on schizophrenia and subgroups (male, female; ≤40 y, >40 y; the married, the unmarried) from 2005 to 2014, Hefei, China. We further explored the effects of different degrees (moderate and severe) of floods and their temporal changes on schizophrenia. There was a significant association between floods and admissions risk for schizophrenia. And the lag effects for schizophrenia lasted ten days (lag 5-lag 14), with the greatest effect on lag 9 (RR = 1.036, 95% confidence interval (CI): 1.014–1.058). The married, ≤40 y were sensitive to floods. The significant difference wasn't found for genders. The effects of the severe flood were higher than moderate floods, with the largest RR of 1.073 (95%CI: 1.029–1.119). The adverse effects were found in the middle and late period with a decreasing trend in the later period. This study suggests a significant association between floods and schizophrenia with ten days of lag effects in Hefei, China. Male, female, <40 y and the married are vulnerable to both moderate and severe floods. The findings might be used to allocate medical resources of mental health after floods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助水獭采纳,获得10
1秒前
1秒前
1秒前
研友_nv2r4n发布了新的文献求助10
2秒前
喵叽发布了新的文献求助10
2秒前
槐夏完成签到,获得积分10
2秒前
3秒前
科研通AI5应助su采纳,获得10
3秒前
3秒前
科目三应助MJQ采纳,获得30
3秒前
3秒前
慕子发布了新的文献求助20
4秒前
lumangxiaozi完成签到,获得积分10
4秒前
积极的凌波完成签到,获得积分10
4秒前
xiaxiao应助小小酥采纳,获得100
4秒前
523完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
6秒前
Hupoo发布了新的文献求助10
6秒前
传奇3应助冬瓜有内涵呐采纳,获得10
6秒前
6秒前
酷波er应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
Aurora发布了新的文献求助10
7秒前
7秒前
Ava应助科研通管家采纳,获得10
7秒前
Chen发布了新的文献求助10
7秒前
prosperp应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
kingwill应助科研通管家采纳,获得20
8秒前
伍贰肆发布了新的文献求助10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762