A pedigree-based prediction model identifies carriers of deleterious de novo mutations in families with Li-Fraumeni syndrome

系谱图 李-弗劳门尼综合征 生物 遗传学 种系突变 生殖系 一致性 乳腺癌 人类遗传学 突变 癌症 基因
作者
Fan Gao,Xuedong Pan,Elissa B. Dodd-Eaton,Carlos Vera Recio,Matthew D. Montierth,Jasmina Bojadzieva,L. Phuong,Kristin Zelley,Valen E. Johnson,Danielle Braun,Kim E. Nichols,Judy E. Garber,Sharon A. Savage,Louise C. Strong,Wenyi Wang
出处
期刊:Genome Research [Cold Spring Harbor Laboratory]
卷期号:30 (8): 1170-1180 被引量:3
标识
DOI:10.1101/gr.249599.119
摘要

De novo mutations (DNMs) are increasingly recognized as rare disease causal factors. Identifying DNM carriers will allow researchers to study the likely distinct molecular mechanisms of DNMs. We developed Famdenovo to predict DNM status (DNM or familial mutation [FM]) of deleterious autosomal dominant germline mutations for any syndrome. We introduce Famdenovo.TP53 for Li-Fraumeni syndrome (LFS) and analyze 324 LFS family pedigrees from four US cohorts: a validation set of 186 pedigrees and a discovery set of 138 pedigrees. The concordance index for Famdenovo.TP53 prediction was 0.95 (95% CI: [0.92, 0.98]). Forty individuals (95% CI: [30, 50]) were predicted as DNM carriers, increasing the total number from 42 to 82. We compared clinical and biological features of FM versus DNM carriers: (1) cancer and mutation spectra along with parental ages were similarly distributed; (2) ascertainment criteria like early-onset breast cancer (age 20-35 yr) provides a condition for an unbiased estimate of the DNM rate: 48% (23 DNMs vs. 25 FMs); and (3) hotspot mutation R248W was not observed in DNMs, although it was as prevalent as hotspot mutation R248Q in FMs. Furthermore, we introduce Famdenovo.BRCA for hereditary breast and ovarian cancer syndrome and apply it to a small set of family data from the Cancer Genetics Network. In summary, we introduce a novel statistical approach to systematically evaluate deleterious DNMs in inherited cancer syndromes. Our approach may serve as a foundation for future studies evaluating how new deleterious mutations can be established in the germline, such as those in TP53.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
出离离离完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
ccc6195发布了新的文献求助20
2秒前
周老二发布了新的文献求助50
2秒前
dandna完成签到 ,获得积分10
2秒前
陈大星啊发布了新的文献求助10
4秒前
4秒前
4秒前
zcz发布了新的文献求助10
5秒前
5秒前
亚特兰蒂斯应助hhhhhhh采纳,获得10
6秒前
6秒前
6秒前
科研通AI6.1应助随遇而安采纳,获得10
7秒前
7秒前
8秒前
蓝天应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
liangwang完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
烟花应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
李健应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770783
求助须知:如何正确求助?哪些是违规求助? 5587536
关于积分的说明 15425401
捐赠科研通 4904207
什么是DOI,文献DOI怎么找? 2638601
邀请新用户注册赠送积分活动 1586484
关于科研通互助平台的介绍 1541557