己醛
食物腐败
保质期
脂质氧化
活性包装
食品科学
食品加工
化学
食品包装
有机化学
细菌
生物
遗传学
抗氧化剂
作者
Mari Lehtonen,Sonja Kekäläinen,Ida Nikkilä,Petri Kilpeläinen,Maija Tenkanen,Kirsi S. Mikkonen
标识
DOI:10.1016/j.fochx.2019.100074
摘要
Transportation and storage of vegetables and fruits, including berries, is increasing to meet growing consumer demand for fresh foods. Ripening and softening of plant tissues may be slowed down by hexanal, a safe volatile compound that also has antimicrobial properties. Thus hexanal could be applied during the food distribution chain to slow down the spoilage of plant-based products and reduce food waste. Nonetheless, due to the rapid evaporation of hexanal, a constant supply is needed. Our aim was to develop a concept to incorporate food-grade sunflower oil in a polysaccharide aerogel matrix for controlled in situ production and release of hexanal. We compared enzyme- and light-catalyzed lipid oxidation reactions, determined the release of hexanal at different conditions, and performed storage stability tests of blueberries and cherry tomatoes. The lipid-loaded aerogels assessed here are a potential novel delivery matrix for controlled hexanal formation to extend the shelf life of plant-based products.
科研通智能强力驱动
Strongly Powered by AbleSci AI