亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Single Cell Transcriptomics Revealed AML and Non-AML Cell Clusters Relevant to Relapse and Remission in Pediatric AML

医学 髓系白血病 白血病 肿瘤科 髓样 内科学 免疫分型 微小残留病 骨髓
作者
Beena E Thomas,Pruthvi Perumalla,Swati S Bhasin,Debasree Sarkar,Bhakti Dwivedi,Sunita I. Park,Deborah DeRyckere,Curtis J. Henry,Sunil S. Raikar,Christopher C. Porter,Melinda Pauly,Ryan J. Summers,Sharon M. Castellino,Daniel S. Wechsler,Douglas K. Graham,Manoj Bhasin
出处
期刊:Blood [American Society of Hematology]
卷期号:136: 24-25 被引量:3
标识
DOI:10.1182/blood-2020-142513
摘要

Introduction: While advances in front-line conventional chemotherapy have increased the likelihood of attaining remission in pediatric AML, relapse rates remain high (25-35%), and novel therapies are needed (Zhang, Savage et al. 2019). The clinical and molecular heterogeneity of AML makes it complex to study and creates challenges for the development of novel therapies (Bolouri, Farrar et al. 2018). It is important to identify cells and pathways underlying relapse to facilitate development of novel therapies. Single-cell RNA Sequencing (scRNA-Seq) allows in-depth analysis of the heterogeneous AML landscape to provide a detailed view of the tumor microenvironment, revealing populations of blasts and immune cells which may be relevant to relapse or complete remission. Methods: We analyzed ~36,500 cells from 14 pediatric AML bone marrow samples in our institutional biorepository, spanning different AML subtypes and 3 healthy children to generate a comprehensive scRNA-Seq landscape of immature AML-associated blasts and microenvironment cells. Samples collected at the time of diagnosis (Dx), end of induction (EOI), and relapse (Rel) were used to generate scRNA-Seq data using a droplet-based barcoding technique (Panigrahy, Gartung et al. 2019). After normalization of scRNA-Seq data, the cell clusters were identified using principal component analysis and Uniform Manifold Approximation and Projection (UMAP) approach (Becht et al, 2018). Differential expression, pathways and systems biology analysis between relapsed and remission patients reveal differences for specific cell clusters (Panigrahy, Gartung et al. 2019). To determine the clinical outcome association of our AML blast specific markers, survival analysis was performed on AML TARGET data (https://ocg.cancer.gov/programs/target) using cox proportional hazard survival approach. To characterize AML blast cells with high accuracy, we used support vector machine (SVM), an Artificial Intelligence based feature extraction and model development approach (Bhasin, Ndebele et al. 2016). Results:ScRNA-Seq analysis of paired Dx and EOI samples using UMAP identified three blast cell clusters with significant gene expression differences among different patients, indicating heterogeneity of AML blast cells (Fig 1a, b). Comparative analysis of the three Dx enriched blast cell clusters with other cells identified a “core blast cell signature” with overexpression of genes like AZU1, CLEC11A, FLT3, and NREP (Fig 1c). These core AML-blast genes were linked to significant activation of the Wnt/Ca2+, Phospholipase C, and integrin signaling pathways (Z score >2 and P-value The scRNA-Seq of AML specific blast cells from relapsed and remission samples exhibited a different clustering pattern indicating different transcriptome landscapes. Relapse-associated AML cell clusters expressed high levels of AZU1, S100A4, LGALS1, and GRK2 genes (Fig 2a). Analysis of the non-AML tumor microenvironment demonstrated enrichment of T/NK in relapsed samples, with differential expression of T cell regulatory/activation genes (Fig 2b, c). ScRNA-Seq showed enrichment of monocyte/macrophage cell clusters in remission samples with distinct relapse- and remission-specific clusters. Remission associated macrophage/monocyte clusters showed overexpression of S100A10, FTH1, CST3 and IFITM2 genes (Fig 2d). Similarly, enrichment of T cell and monocyte/macrophage clusters was observed in relapse and remission samples respectively during EOI. Conclusions: Using single cell transcriptomics we developed a novel potential gene signature to characterize heterogenous AML blast populations with high sensitivity. These genes and the pathways they regulate implicate potential therapeutic targets in pediatric AML. Single cell transcriptome analysis also enabled identification of cell clusters with modulated gene expression at both Dx and EOI that may be useful in predicting relapse/remission. Download : Download high-res image (838KB) Download : Download full-size image Disclosures Bhasin: Canomiiks Inc: Current equity holder in private company, Other: Co-Founder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慵懒的猫完成签到 ,获得积分10
14秒前
23秒前
成就仇天完成签到 ,获得积分10
24秒前
1分钟前
摘星012完成签到 ,获得积分10
1分钟前
Green7完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
cj完成签到,获得积分10
2分钟前
2分钟前
小胡爱科研完成签到 ,获得积分10
3分钟前
KSung完成签到 ,获得积分10
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
yi只熊发布了新的文献求助10
4分钟前
震动的听枫完成签到,获得积分10
4分钟前
4分钟前
zcx完成签到,获得积分10
4分钟前
烟花应助zcx采纳,获得10
4分钟前
每天都是新的一天完成签到,获得积分10
4分钟前
4分钟前
吴WU发布了新的文献求助10
4分钟前
5分钟前
zcx发布了新的文献求助10
5分钟前
5分钟前
搜集达人应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
吴WU完成签到,获得积分10
5分钟前
爱寻完成签到 ,获得积分10
5分钟前
ding应助粒子采纳,获得10
6分钟前
Makkki完成签到,获得积分10
7分钟前
情怀应助爱听歌笑寒采纳,获得10
7分钟前
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
片片枫叶情完成签到,获得积分10
7分钟前
sl完成签到 ,获得积分10
8分钟前
李友健完成签到 ,获得积分10
8分钟前
8分钟前
9分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450450
求助须知:如何正确求助?哪些是违规求助? 3045935
关于积分的说明 9003702
捐赠科研通 2734577
什么是DOI,文献DOI怎么找? 1500058
科研通“疑难数据库(出版商)”最低求助积分说明 693318
邀请新用户注册赠送积分活动 691454