计算机科学
图形
人工智能
机器学习
代表(政治)
理论计算机科学
药品
自然语言处理
药理学
医学
政治学
政治
法学
作者
Yingheng Wang,Yaosen Min,Xin Chen,Ji Wu
出处
期刊:Cornell University - arXiv
日期:2021-04-19
卷期号:: 2921-2933
被引量:146
标识
DOI:10.1145/3442381.3449786
摘要
Drug-drug interaction(DDI) prediction is an important task in the medical health machine learning community. This study presents a new method, multi-view graph contrastive representation learning for drug-drug interaction prediction, MIRACLE for brevity, to capture inter-view molecule structure and intra-view interactions between molecules simultaneously. MIRACLE treats a DDI network as a multi-view graph where each node in the interaction graph itself is a drug molecular graph instance. We use GCNs and bond-aware attentive message passing networks to encode DDI relationships and drug molecular graphs in the MIRACLE learning stage, respectively. Also, we propose a novel unsupervised contrastive learning component to balance and integrate the multi-view information. Comprehensive experiments on multiple real datasets show that MIRACLE outperforms the state-of-the-art DDI prediction models consistently.
科研通智能强力驱动
Strongly Powered by AbleSci AI