Multi-view Graph Contrastive Representation Learning for Drug-Drug Interaction Prediction

计算机科学 图形 人工智能 机器学习 代表(政治) 理论计算机科学 药品 自然语言处理 药理学 医学 政治学 政治 法学
作者
Yingheng Wang,Yaosen Min,Xin Chen,Ji Wu
出处
期刊:Cornell University - arXiv 卷期号:: 2921-2933 被引量:23
标识
DOI:10.1145/3442381.3449786
摘要

Potential Drug-Drug Interactions (DDI) occur while treating complex or co-existing diseases with drug combinations, which may cause changes in drugs' pharmacological activity. Therefore, DDI prediction has been an important task in the medical health machine learning community. Graph-based learning methods have recently aroused widespread interest and are proved to be a priority for this task. However, these methods are often limited to exploiting the inter-view drug molecular structure and ignoring the drug's intra-view interaction relationship, vital to capturing the complex DDI patterns. This study presents a new method, multi-view graph contrastive representation learning for drug-drug interaction prediction, MIRACLE for brevity, to capture inter-view molecule structure and intra-view interactions between molecules simultaneously. MIRACLE treats a DDI network as a multi-view graph where each node in the interaction graph itself is a drug molecular graph instance. We use GCN to encode DDI relationships and a bond-aware attentive message propagating method to capture drug molecular structure information in the MIRACLE learning stage. Also, we propose a novel unsupervised contrastive learning component to balance and integrate the multi-view information. Comprehensive experiments on multiple real datasets show that MIRACLE outperforms the state-of-the-art DDI prediction models consistently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
活力安筠应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得30
刚刚
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
jie酱拌面应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
浮游应助无心的依秋采纳,获得40
刚刚
852应助科研通管家采纳,获得10
刚刚
刚刚
jie酱拌面应助科研通管家采纳,获得10
刚刚
刚刚
大模型应助科研通管家采纳,获得10
刚刚
热心子轩应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
搜集达人应助adasdad采纳,获得10
1秒前
all应助科研通管家采纳,获得20
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
178应助科研通管家采纳,获得10
1秒前
w_tiger完成签到 ,获得积分10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
顾矜应助还单身的香菇采纳,获得10
2秒前
聪明无敌小腚宝完成签到,获得积分10
2秒前
wz完成签到 ,获得积分10
2秒前
英俊的铭应助CHL5722采纳,获得10
3秒前
4秒前
4秒前
zj发布了新的文献求助10
4秒前
南枝完成签到,获得积分10
4秒前
科研通AI5应助qwe31533采纳,获得30
4秒前
科目三应助yukky采纳,获得10
4秒前
campus完成签到,获得积分10
4秒前
Lucas应助glycine采纳,获得10
5秒前
山君完成签到 ,获得积分10
5秒前
如意草丛完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513