Physics-informed multi-LSTM networks for metamodeling of nonlinear structures

过度拟合 非线性系统 元建模 人工神经网络 外推法 人工智能 深度学习 稳健性(进化) 机器学习 计算机科学 理论计算机科学 物理 数学 软件工程 化学 量子力学 基因 生物化学 数学分析
作者
Ruiyang Zhang,Yang Liu,Hao Sun
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:369: 113226-113226 被引量:267
标识
DOI:10.1016/j.cma.2020.113226
摘要

This paper introduces an innovative physics-informed deep learning framework for metamodeling of nonlinear structural systems with scarce data. The basic concept is to incorporate available, yet incomplete, physics knowledge (e.g., laws of physics, scientific principles) into deep long short-term memory (LSTM) networks, which constrains and boosts the learning within a feasible solution space. The physics constraints are embedded in the loss function to enforce the model training which can accurately capture latent system nonlinearity even with very limited available training datasets. Specifically for dynamic structures, physical laws of equation of motion, state dependency and hysteretic constitutive relationship are considered to construct the physics loss. In particular, two physics-informed multi-LSTM network architectures are proposed for structural metamodeling. The satisfactory performance of the proposed framework is successfully demonstrated through two illustrative examples (e.g., nonlinear structures subjected to ground motion excitation). It turns out that the embedded physics can alleviate overfitting issues, reduce the need of big training datasets, and improve the robustness of the trained model for more reliable prediction with extrapolation ability. As a result, the physics-informed deep learning paradigm outperforms classical non-physics-guided data-driven neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
酷波er应助刘永红采纳,获得10
1秒前
完美世界应助早早采纳,获得10
3秒前
郭敏菲发布了新的文献求助10
5秒前
科研通AI6应助何以载道采纳,获得10
6秒前
Dai应助lvsehx采纳,获得10
6秒前
汉堡包应助huangnvshi采纳,获得10
7秒前
8秒前
8秒前
科研通AI6应助小梁要加油采纳,获得10
11秒前
11秒前
12秒前
changping应助科研通管家采纳,获得150
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
changping应助科研通管家采纳,获得150
12秒前
科研通AI6应助科研通管家采纳,获得150
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得150
12秒前
传奇3应助科研通管家采纳,获得30
13秒前
changping应助科研通管家采纳,获得150
13秒前
浮游应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
changping应助科研通管家采纳,获得150
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得150
13秒前
Akim应助科研通管家采纳,获得10
13秒前
changping应助科研通管家采纳,获得150
13秒前
浮游应助科研通管家采纳,获得10
13秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5135125
求助须知:如何正确求助?哪些是违规求助? 4335681
关于积分的说明 13507506
捐赠科研通 4173285
什么是DOI,文献DOI怎么找? 2288314
邀请新用户注册赠送积分活动 1289041
关于科研通互助平台的介绍 1230093