莱维航班
计算机科学
BitTorrent跟踪器
蚱蜢
局部最优
趋同(经济学)
跟踪(教育)
人口
数学优化
早熟收敛
算法
人工智能
眼动
粒子群优化
数学
心理学
随机游动
生态学
教育学
统计
生物
人口学
社会学
经济
经济增长
作者
Huanlong Zhang,Zeng Gao,Jie Zhang,Guanglu Yang
标识
DOI:10.1007/978-3-030-31654-9_19
摘要
Grasshopper optimization algorithm (GOA) is a new meta-heuristic optimization algorithm that it simulates behavior of grasshopper swarms in nature. In this paper, a tracking framework called improved levy flight grasshopper optimization algorithm (LGOA) tracker is proposed. The levy flight can increase the diversity of population, prevent premature convergence and enhance the capability of jumping out of local optimal optima, thus improving the tracking accuracy. In addition, GOA has been applied to visual tracking for the first time as far as we know. Finally, compared with other optimization-based trackers, experimental results show that our tracker has obvious advantages.
科研通智能强力驱动
Strongly Powered by AbleSci AI