LeafGAN: An Effective Data Augmentation Method for Practical Plant Disease Diagnosis

过度拟合 计算机科学 人工智能 植物病害 自动化 多样性(控制论) 机器学习 领域(数学) 上下文图像分类 模式识别(心理学) 计算机视觉 图像(数学) 人工神经网络 工程类 数学 机械工程 生物 生物技术 纯数学
作者
Quan Huu,Hiroyuki Uga,Satoshi Kagiwada,Hitoshi Iyatomi
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (2): 1258-1267 被引量:117
标识
DOI:10.1109/tase.2020.3041499
摘要

Many applications for the automated diagnosis of plant disease have been developed based on the success of deep learning techniques. However, these applications often suffer from overfitting, and the diagnostic performance is drastically decreased when used on test data sets from new environments. In this article, we propose LeafGAN, a novel image-to-image translation system with own attention mechanism. LeafGAN generates a wide variety of diseased images via transformation from healthy images, as a data augmentation tool for improving the performance of plant disease diagnosis. Due to its own attention mechanism, our model can transform only relevant areas from images with a variety of backgrounds, thus enriching the versatility of the training images. Experiments with five-class cucumber disease classification show that data augmentation with vanilla CycleGAN cannot help to improve the generalization, i.e., disease diagnostic performance increased by only 0.7% from the baseline. In contrast, LeafGAN boosted the diagnostic performance by 7.4%. We also visually confirmed that the generated images by our LeafGAN were much better quality and more convincing than those generated by vanilla CycleGAN. The code is available publicly at https://github.com/IyatomiLab/LeafGAN. Note to Practitioners Automated plant disease diagnosis systems play an important role in the agricultural automation field. Building a practical image-based automatic plant diagnosis system requires collecting a wide variety of disease images with reliable label information. However, it is quite labor-intensive. Conventional systems have reported relatively high diagnosis performance, but most of their scores were largely biased due to the “latent similarity” between training and test images, and their true diagnosis capabilities were much lower than claimed. To address this issue, we propose LeafGAN, which generates countless diverse and high-quality training images; it works as an efficient data augmentation for the diagnosis classifier. Such generated images can be used as useful resources for improving the performance of the cucumber disease diagnosis systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心醉蝶完成签到 ,获得积分10
刚刚
3秒前
科研通AI5应助韦小艺采纳,获得10
3秒前
阿壮发布了新的文献求助10
3秒前
4秒前
科研通AI5应助复杂的世德采纳,获得10
5秒前
加菲完成签到,获得积分10
8秒前
看火人完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
kkneed发布了新的文献求助10
10秒前
12秒前
12秒前
韦小艺完成签到,获得积分10
12秒前
15秒前
我有一头小毛驴给SUGA的求助进行了留言
15秒前
asdfghjk完成签到,获得积分10
15秒前
kkneed完成签到,获得积分10
16秒前
GuMingyang发布了新的文献求助10
16秒前
夏天发布了新的文献求助10
16秒前
一生所爱完成签到,获得积分10
16秒前
kehan发布了新的文献求助10
19秒前
19秒前
da完成签到,获得积分10
20秒前
小林太郎应助友好羊采纳,获得20
20秒前
天真的莺完成签到,获得积分10
22秒前
22秒前
Jessie发布了新的文献求助20
25秒前
27秒前
28秒前
Gan完成签到,获得积分10
28秒前
28秒前
Puokn完成签到,获得积分10
29秒前
30秒前
我知道完成签到,获得积分10
30秒前
32秒前
byron发布了新的文献求助10
32秒前
食化狂徒完成签到,获得积分10
34秒前
夸父完成签到,获得积分10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546412
求助须知:如何正确求助?哪些是违规求助? 3123558
关于积分的说明 9355739
捐赠科研通 2822124
什么是DOI,文献DOI怎么找? 1551271
邀请新用户注册赠送积分活动 723287
科研通“疑难数据库(出版商)”最低求助积分说明 713690