亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EdgeKE: An On-Demand Deep Learning IoT System for Cognitive Big Data on Industrial Edge Devices

物联网 人工神经网络 工业4.0 智慧城市
作者
Weiwei Fang,Xue Feng,Yi Ding,Naixue Xiong,Victor C. M. Leung
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (9): 6144-6152 被引量:17
标识
DOI:10.1109/tii.2020.3044930
摘要

Motivated by the prospects of 5G communications and industrial Internet of Things (IoT), recent years have seen the rise of a new computing paradigm, edge computing, which shifts data analytics to network edges that are at the proximity of big data sources. Although deep neural networks (DNNs) have been extensively used in many platforms and scenarios, they are usually both compute and memory intensive, thus, difficult to be deployed on resource-limited edge devices and in performance-demanding edge applications. Hence, there is an urgent need for techniques that enable DNN models to fit into edge devices, while ensuring acceptable execution costs and inference accuracy. This article proposes an on-demand DNN model inference system for industrial edge devices, called knowledge distillation and early exit on edge (EdgeKE). It focuses on the following two design knobs: first, DNN compression based on knowledge distillation, which trains the compact edge models under the supervision of large complex models for improving accuracy and speed; second, DNN acceleration based on early exit, which provides flexible choices for satisfying distinct latency or accuracy requirements from edge applications. By extensive evaluations on the CIFAR100 dataset and across three state-of-art edge devices, experimental results demonstrate that EdgeKE significantly outperforms the baseline models in terms of inference latency and memory footprint, while maintaining competitive classification accuracy. Furthermore, EdgeKE is verified to be efficiently adaptive to the application requirements on the inference performance. The accuracy loss is within 4.84% under various latency constraints, and the speedup ratio is up to 3.30× under various accuracy requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
平淡的傲芙完成签到,获得积分10
8秒前
wqx完成签到 ,获得积分10
10秒前
yuan完成签到,获得积分10
12秒前
开心努力毕业版完成签到 ,获得积分10
13秒前
15秒前
huaiting完成签到 ,获得积分10
37秒前
48秒前
阿冰发布了新的文献求助10
53秒前
bkagyin应助平淡的傲芙采纳,获得10
1分钟前
1分钟前
传奇3应助gby2018采纳,获得10
1分钟前
乘风文月完成签到,获得积分10
1分钟前
。。。发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助。。。采纳,获得10
1分钟前
fleeper发布了新的文献求助10
1分钟前
caca完成签到,获得积分10
1分钟前
qinli完成签到,获得积分10
1分钟前
yumi完成签到,获得积分10
1分钟前
Drsong完成签到 ,获得积分10
2分钟前
如沐春风完成签到,获得积分20
2分钟前
2分钟前
bkagyin应助zhangxr采纳,获得10
2分钟前
2分钟前
阿冰完成签到,获得积分10
2分钟前
酷炫的尔丝完成签到 ,获得积分10
2分钟前
子乐完成签到 ,获得积分10
2分钟前
飘逸慕灵发布了新的文献求助30
2分钟前
杰帅完成签到,获得积分10
2分钟前
清脆的书桃完成签到,获得积分10
2分钟前
如沐春风发布了新的文献求助10
2分钟前
zhang发布了新的文献求助10
2分钟前
雪糕考研完成签到,获得积分10
2分钟前
雪糕考研发布了新的文献求助10
2分钟前
3分钟前
zhang完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
彭于晏应助fleeper采纳,获得10
3分钟前
斯文败类应助如沐春风采纳,获得10
3分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139548
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795221
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301468
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146