Profiling antibiotic resistance in Escherichia coli strains displaying differential antibiotic susceptibilities using Raman spectroscopy

抗生素 四环素 微生物学 抗生素耐药性 大肠杆菌 氨苄西林 环丙沙星 细菌 核酸 化学 生物 生物化学 遗传学 基因
作者
Taru Verma,Harshitha Annappa,Saumya Singh,Siva Umapathy,Dipankar Nandi
出处
期刊:Journal of Biophotonics [Wiley]
卷期号:14 (1) 被引量:29
标识
DOI:10.1002/jbio.202000231
摘要

Abstract The rapid identification of antibiotic resistant bacteria is important for public health. In the environment, bacteria are exposed to sub‐inhibitory antibiotic concentrations which has implications in the generation of multi‐drug resistant strains. To better understand these issues, Raman spectroscopy was employed coupled with partial least squares‐discriminant analysis to profile Escherichia coli strains treated with sub‐inhibitory concentrations of antibiotics. Clear differences were observed between cells treated with bacteriostatic (tetracycline and rifampicin) and bactericidal (ampicillin, ciprofloxacin, and ceftriaxone) antibiotics for 6 hr: First, atomic force microscopy revealed that bactericidal antibiotics cause extensive cell elongation whereas short filaments are observed with bacteriostatic antibiotics. Second, Raman spectral analysis revealed that bactericidal antibiotics lower nucleic acid to protein (I 812 /I 830 ) and nucleic acid to lipid ratios (I 1483 /I 1452 ) whereas the opposite is seen with bacteriostatic antibiotics. Third, the protein to lipid ratio (I 2936 /I 2885 and I 2936 /I 2850 ) is a Raman stress signature common to both the classes. These signatures were validated using two mutants, Δ lon and Δ acrB , that exhibit relatively high and low resistance towards antibiotics, respectively. In addition, these spectral markers correlated with the emergence of phenotypic antibiotic resistance. Overall, this study demonstrates the efficacy of Raman spectroscopy to identify resistance in bacteria to sub‐lethal concentrations of antibiotics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分10
1秒前
1秒前
小安发布了新的文献求助10
1秒前
2秒前
叶未晞yi完成签到,获得积分10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得30
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
kilig应助科研通管家采纳,获得10
5秒前
5秒前
华仔应助科研通管家采纳,获得30
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
博ge发布了新的文献求助10
7秒前
8秒前
葶儿发布了新的文献求助10
8秒前
hgcyp完成签到,获得积分10
13秒前
ysh完成签到,获得积分10
13秒前
13秒前
15秒前
15秒前
16秒前
wang完成签到,获得积分10
17秒前
Jzhang应助Yimim采纳,获得10
18秒前
沐风发布了新的文献求助20
19秒前
汉关发布了新的文献求助10
21秒前
21秒前
葶儿完成签到,获得积分10
21秒前
安详中蓝完成签到 ,获得积分10
22秒前
呆萌士晋发布了新的文献求助10
22秒前
22秒前
24秒前
呆头发布了新的文献求助10
26秒前
若水发布了新的文献求助200
27秒前
27秒前
28秒前
子川发布了新的文献求助10
28秒前
大头娃娃没下巴完成签到,获得积分10
30秒前
liyuchen完成签到,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824