Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: New microstructure description indices and fracture mechanisms

材料科学 微观结构 极限抗拉强度 融合 延展性(地球科学) 扫描电子显微镜 延伸率 韧性 共晶体系 合金 复合材料 语言学 哲学 蠕动
作者
Qian Liu,Hongkun Wu,Moses J. Paul,Peidong He,Zhongxiao Peng,Bernd Gludovatz,Jamie J. Kruzic,Chun H. Wang,Xiao Peng Li
出处
期刊:Acta Materialia [Elsevier]
卷期号:201: 316-328 被引量:133
标识
DOI:10.1016/j.actamat.2020.10.010
摘要

In this study, a machine-learning approach based on Gaussian process regression was developed to identify the optimized processing window for laser powder bed fusion (LPBF). Using this method, we found a new and much larger optimized LPBF processing window than was known before for manufacturing fully dense AlSi10Mg samples (i.e., relative density ≥ 99%). The newly determined optimized processing parameters (e.g., laser power and scan speed) made it possible to achieve previously unattainable combinations of high strength and ductility. The results showed that although the AlSi10Mg specimens exhibited similar Al-Si eutectic microstructures (e.g., cell structures in fine and coarse grains), they displayed large difference in their mechanical properties including hardness (118 - 137 HV 10), ultimate tensile strength (297 - 389 MPa), elongation to failure (6.3 - 10.3%), and fracture toughness (9.9 - 12.7 kJ/m2). The underlying reason was attributed to the subtle microstructural differences that were further revealed using two newly defined morphology indices (i.e., dimensional-scale index Id and shape index Is) based on several key microstructural features obtained from scanning electron microscopy images. It was found that in addition to grain structure, the sub-grain cell size and cell boundary morphology of the LPBF fabricated AlSi10Mg also strongly affected the mechanical properties of the material. The method established in this study can be readily applied to the LPBF process optimization and mechanical properties manipulation of other widely used metals and alloys or newly designed materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助xlz采纳,获得10
刚刚
研友_VZG7GZ应助唠叨的傲薇采纳,获得10
2秒前
矢量完成签到,获得积分10
3秒前
xiaohang发布了新的文献求助10
3秒前
3秒前
我是老大应助thchiang采纳,获得10
3秒前
科研通AI2S应助ivyjianjie采纳,获得10
3秒前
领导范儿应助suka采纳,获得30
4秒前
一白完成签到,获得积分10
5秒前
5秒前
6秒前
CodeCraft应助momo采纳,获得10
6秒前
大模型应助笑南采纳,获得10
6秒前
王哈哈发布了新的文献求助10
8秒前
南风完成签到,获得积分10
8秒前
西雅完成签到,获得积分10
8秒前
10秒前
赘婿应助鲁大师采纳,获得10
10秒前
sally发布了新的文献求助10
10秒前
10秒前
爆米花应助千纸鹤采纳,获得10
11秒前
12秒前
meimhuang发布了新的文献求助10
12秒前
kuokyt完成签到,获得积分10
12秒前
13秒前
13秒前
FashionBoy应助丘先生采纳,获得10
13秒前
十泱完成签到 ,获得积分10
13秒前
qinqin发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
16秒前
王哈哈完成签到,获得积分20
17秒前
18秒前
18秒前
窝窝头发布了新的文献求助10
18秒前
矢量发布了新的文献求助10
18秒前
火星上火龙果完成签到,获得积分10
19秒前
Progie应助乐观碧彤采纳,获得10
20秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157989
求助须知:如何正确求助?哪些是违规求助? 2809366
关于积分的说明 7881582
捐赠科研通 2467822
什么是DOI,文献DOI怎么找? 1313728
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943