阴极
解耦(概率)
氧化还原
电化学
材料科学
中尺度气象学
同步加速器
电池(电)
锂离子电池
镍
化学物理
化学工程
纳米技术
电极
化学
冶金
物理
物理化学
热力学
光学
工程类
控制工程
气象学
功率(物理)
作者
Guannan Qian,Jin Zhang,Shengqi Chu,Jizhou Li,Kai Zhang,Qingxi Yuan,Zi‐Feng Ma,P. Pianetta,Linsen Li,Keeyoung Jung,Yijin Liu
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2021-01-27
卷期号:6 (2): 687-693
被引量:55
标识
DOI:10.1021/acsenergylett.0c02699
摘要
The degradation of nickel-rich cathode materials for lithium-ion batteries upon prolonged electrochemical cycling features a complicated interplay among electronic structure, lattice configuration, and micro-morphology. The underlying mechanism for such an entanglement of different material properties at nano- to mesoscales is fundamental to the battery performance but not well-understood yet. Here we investigate the correlation between the local redox reaction and lattice mismatch through a nano-resolution synchrotron spectro-microscopy study of LiNi0.8Co0.1Mn0.1O2 (NCM 811) cathode particles. With assistance from a machine-learning-based data classification method, we identify local regions that demonstrate a strain–redox decoupling effect, which can be attributed to different side reactions. Our results highlight the mesoscale reaction heterogeneity in the battery cathode and suggest that particle structure engineering could be a viable approach to mitigate the chemomechanical degradation of cathode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI