Automatic Boundary Extraction of Large-Scale Photovoltaic Plants Using a Fully Convolutional Network on Aerial Imagery

计算机科学 卷积神经网络 航空影像 人工智能 航空影像 光伏系统 摄影测量学 边界(拓扑) 特征提取 计算机视觉 遥感 模式识别(心理学) 图像(数学) 地质学 工程类 数学 电气工程 数学分析
作者
Amir Mohammad Moradi Sizkouhi,Mohammadreza Aghaei,Sayyed Majid Esmailifar,Mohammad Reza Mohammadi,Francesco Grimaccia
出处
期刊:IEEE Journal of Photovoltaics [Institute of Electrical and Electronics Engineers]
卷期号:10 (4): 1061-1067 被引量:37
标识
DOI:10.1109/jphotov.2020.2992339
摘要

This article presents a novel method for boundary extraction of photovoltaic (PV) plants using a fully convolutional network (FCN). Extracting the boundaries of PV plants is essential in the process of aerial inspection and autonomous monitoring by aerial robots. This method provides a clear delineation of the utility-scale PV plants' boundaries for PV developers, operation and maintenance service providers for use in aerial photogrammetry, flight mapping, and path planning during the autonomous monitoring of PV plants. For this purpose, as a prerequisite, the “Amir” dataset consisting of aerial imagery of PV plants from different countries, has been collected. A Mask-RCNN architecture is employed as a deep network with VGG16 as a backbone to detect the boundaries precisely. As comparison, the results of another framework based on classical image processing are compared with the FCN performance in PV plants boundary detection. The results of the FCN demonstrate that the trained model is able to detect the boundaries of PV plants with an accuracy of 96.99% and site-specific tuning of boundary parameters is no longer required.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
1秒前
Mida应助科研通管家采纳,获得10
1秒前
求助人员应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Rokemonis3Kg完成签到,获得积分10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
维奈克拉应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得30
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
顺利萃发布了新的文献求助10
2秒前
ilihe应助科研通管家采纳,获得10
2秒前
WizBLue完成签到,获得积分10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
求助人员应助科研通管家采纳,获得10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
求助人员应助科研通管家采纳,获得10
2秒前
2秒前
和谐青柏应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
ilihe应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
小蘑菇应助落寞飞烟采纳,获得100
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559