Deep Collaborative Multi-View Hashing for Large-Scale Image Search

散列函数 计算机科学 汉明空间 动态完美哈希 人工智能 通用哈希 理论计算机科学 判别式 图像检索 模式识别(心理学) 汉明距离 特征哈希 哈希表 图像(数学) 二进制代码 双重哈希 机器学习 二进制数 汉明码 算法 数学 区块代码 计算机安全 解码方法 算术
作者
Lei Zhu,Xu Lu,Zhiyong Cheng,Jingjing Li,Huaxiang Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 4643-4655 被引量:135
标识
DOI:10.1109/tip.2020.2974065
摘要

Hashing could significantly accelerate large-scale image search by transforming the high-dimensional features into binary Hamming space, where efficient similarity search can be achieved with very fast Hamming distance computation and extremely low storage cost. As an important branch of hashing methods, multi-view hashing takes advantages of multiple features from different views for binary hash learning. However, existing multi-view hashing methods are either based on shallow models which fail to fully capture the intrinsic correlations of heterogeneous views, or unsupervised deep models which suffer from insufficient semantics and cannot effectively exploit the complementarity of view features. In this paper, we propose a novel Deep Collaborative Multi-view Hashing (DCMVH) method to deeply fuse multi-view features and learn multi-view hash codes collaboratively under a deep architecture. DCMVH is a new deep multi-view hash learning framework. It mainly consists of 1) multiple view-specific networks to extract hidden representations of different views, and 2) a fusion network to learn multi-view fused hash code. DCMVH associates different layers with instance-wise and pair-wise semantic labels respectively. In this way, the discriminative capability of representation layers can be progressively enhanced and meanwhile the complementarity of different view features can be exploited effectively. Finally, we develop a fast discrete hash optimization method based on augmented Lagrangian multiplier to efficiently solve the binary hash codes. Experiments on public multi-view image search datasets demonstrate our approach achieves substantial performance improvement over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余生请指教完成签到,获得积分10
1秒前
FashionBoy应助可耐的善斓采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
小马甲应助309175700@qq.com采纳,获得100
3秒前
5秒前
5秒前
Zhang发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
VuuVuu发布了新的文献求助10
7秒前
7秒前
今后应助memo999采纳,获得10
7秒前
7秒前
8秒前
jianwuzhou完成签到,获得积分10
8秒前
美好的冰蓝完成签到 ,获得积分10
8秒前
小绵羊完成签到 ,获得积分10
8秒前
虚心求学发布了新的文献求助10
9秒前
自信尔竹发布了新的文献求助10
10秒前
难过橘子发布了新的文献求助10
11秒前
11秒前
xiaowei666发布了新的文献求助30
11秒前
含糊的沛蓝关注了科研通微信公众号
11秒前
12秒前
13秒前
13秒前
orixero应助碎月采纳,获得10
14秒前
14秒前
jianwuzhou发布了新的文献求助10
15秒前
15秒前
baronge发布了新的文献求助20
16秒前
haha完成签到,获得积分10
16秒前
田様应助高唯程采纳,获得10
16秒前
Jasper应助62ccc采纳,获得10
17秒前
17秒前
HY发布了新的文献求助30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394047
求助须知:如何正确求助?哪些是违规求助? 4515419
关于积分的说明 14053732
捐赠科研通 4426550
什么是DOI,文献DOI怎么找? 2431454
邀请新用户注册赠送积分活动 1423549
关于科研通互助平台的介绍 1402541