Deep Collaborative Multi-View Hashing for Large-Scale Image Search

散列函数 计算机科学 汉明空间 动态完美哈希 人工智能 通用哈希 理论计算机科学 判别式 图像检索 模式识别(心理学) 汉明距离 特征哈希 哈希表 图像(数学) 二进制代码 双重哈希 机器学习 二进制数 汉明码 算法 数学 区块代码 计算机安全 解码方法 算术
作者
Lei Zhu,Xu Lu,Zhiyong Cheng,Jingjing Li,Huaxiang Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 4643-4655 被引量:135
标识
DOI:10.1109/tip.2020.2974065
摘要

Hashing could significantly accelerate large-scale image search by transforming the high-dimensional features into binary Hamming space, where efficient similarity search can be achieved with very fast Hamming distance computation and extremely low storage cost. As an important branch of hashing methods, multi-view hashing takes advantages of multiple features from different views for binary hash learning. However, existing multi-view hashing methods are either based on shallow models which fail to fully capture the intrinsic correlations of heterogeneous views, or unsupervised deep models which suffer from insufficient semantics and cannot effectively exploit the complementarity of view features. In this paper, we propose a novel Deep Collaborative Multi-view Hashing (DCMVH) method to deeply fuse multi-view features and learn multi-view hash codes collaboratively under a deep architecture. DCMVH is a new deep multi-view hash learning framework. It mainly consists of 1) multiple view-specific networks to extract hidden representations of different views, and 2) a fusion network to learn multi-view fused hash code. DCMVH associates different layers with instance-wise and pair-wise semantic labels respectively. In this way, the discriminative capability of representation layers can be progressively enhanced and meanwhile the complementarity of different view features can be exploited effectively. Finally, we develop a fast discrete hash optimization method based on augmented Lagrangian multiplier to efficiently solve the binary hash codes. Experiments on public multi-view image search datasets demonstrate our approach achieves substantial performance improvement over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助内卷与外包采纳,获得10
4秒前
阿屁屁猪完成签到,获得积分10
4秒前
黄大完成签到,获得积分10
4秒前
冬冬完成签到,获得积分10
5秒前
hhhhhhhh发布了新的文献求助10
5秒前
6秒前
duoduo7发布了新的文献求助10
6秒前
Mic发布了新的文献求助10
6秒前
黑马王子发布了新的文献求助10
7秒前
9秒前
11秒前
tutou发布了新的文献求助10
13秒前
惊艳发布了新的文献求助20
13秒前
共享精神应助迷路的台灯采纳,获得10
13秒前
14秒前
烦恼全吴完成签到 ,获得积分10
14秒前
EnjieLin完成签到,获得积分10
14秒前
15秒前
Mic完成签到,获得积分10
16秒前
超级翰完成签到 ,获得积分10
16秒前
科研通AI2S应助sc采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
shuxi完成签到,获得积分10
18秒前
稳重晓亦完成签到,获得积分10
19秒前
wxyshare应助wv采纳,获得10
20秒前
zyx完成签到,获得积分10
21秒前
wsc应助无情南琴采纳,获得20
21秒前
22秒前
23秒前
斯文败类应助水下月采纳,获得10
23秒前
FashionBoy应助无聊采纳,获得10
23秒前
FashionBoy应助琳io采纳,获得10
23秒前
23秒前
科研通AI6应助duoduo7采纳,获得10
23秒前
虚拟的雪枫完成签到 ,获得积分10
25秒前
科研通AI6应助tutou采纳,获得10
25秒前
临亦完成签到 ,获得积分10
26秒前
搞点学术发布了新的文献求助10
27秒前
LaTeXer应助惊艳采纳,获得60
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536782
求助须知:如何正确求助?哪些是违规求助? 4624440
关于积分的说明 14592026
捐赠科研通 4564913
什么是DOI,文献DOI怎么找? 2502020
邀请新用户注册赠送积分活动 1480820
关于科研通互助平台的介绍 1452003