Deep Collaborative Multi-View Hashing for Large-Scale Image Search

散列函数 计算机科学 汉明空间 动态完美哈希 人工智能 通用哈希 理论计算机科学 判别式 图像检索 模式识别(心理学) 汉明距离 特征哈希 哈希表 图像(数学) 二进制代码 双重哈希 机器学习 二进制数 汉明码 算法 数学 区块代码 计算机安全 解码方法 算术
作者
Lei Zhu,Xu Lu,Zhiyong Cheng,Jingjing Li,Huaxiang Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 4643-4655 被引量:135
标识
DOI:10.1109/tip.2020.2974065
摘要

Hashing could significantly accelerate large-scale image search by transforming the high-dimensional features into binary Hamming space, where efficient similarity search can be achieved with very fast Hamming distance computation and extremely low storage cost. As an important branch of hashing methods, multi-view hashing takes advantages of multiple features from different views for binary hash learning. However, existing multi-view hashing methods are either based on shallow models which fail to fully capture the intrinsic correlations of heterogeneous views, or unsupervised deep models which suffer from insufficient semantics and cannot effectively exploit the complementarity of view features. In this paper, we propose a novel Deep Collaborative Multi-view Hashing (DCMVH) method to deeply fuse multi-view features and learn multi-view hash codes collaboratively under a deep architecture. DCMVH is a new deep multi-view hash learning framework. It mainly consists of 1) multiple view-specific networks to extract hidden representations of different views, and 2) a fusion network to learn multi-view fused hash code. DCMVH associates different layers with instance-wise and pair-wise semantic labels respectively. In this way, the discriminative capability of representation layers can be progressively enhanced and meanwhile the complementarity of different view features can be exploited effectively. Finally, we develop a fast discrete hash optimization method based on augmented Lagrangian multiplier to efficiently solve the binary hash codes. Experiments on public multi-view image search datasets demonstrate our approach achieves substantial performance improvement over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助hms采纳,获得10
2秒前
打打应助天和采纳,获得10
2秒前
peilinyu发布了新的文献求助10
2秒前
酷波er应助iris1874采纳,获得10
3秒前
3秒前
研友_LJGoXn完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
5秒前
2317659604发布了新的文献求助10
5秒前
aliensinger发布了新的文献求助10
6秒前
汉堡包应助hms采纳,获得10
7秒前
张之晟发布了新的文献求助10
7秒前
浮游应助顺利毕业采纳,获得10
7秒前
YHF2发布了新的文献求助10
8秒前
飞艇完成签到,获得积分10
9秒前
9秒前
浮游应助zzl采纳,获得10
11秒前
ding应助动听的网络采纳,获得10
11秒前
科研通AI6应助清秀台灯采纳,获得30
13秒前
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得20
14秒前
Owen应助科研通管家采纳,获得10
14秒前
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得30
14秒前
Hello应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得30
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
会幸福的发布了新的文献求助10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457360
求助须知:如何正确求助?哪些是违规求助? 4563864
关于积分的说明 14291813
捐赠科研通 4488514
什么是DOI,文献DOI怎么找? 2458558
邀请新用户注册赠送积分活动 1448595
关于科研通互助平台的介绍 1424229