Deep Collaborative Multi-View Hashing for Large-Scale Image Search

散列函数 计算机科学 汉明空间 动态完美哈希 人工智能 通用哈希 理论计算机科学 判别式 图像检索 模式识别(心理学) 汉明距离 特征哈希 哈希表 图像(数学) 二进制代码 双重哈希 机器学习 二进制数 汉明码 算法 数学 区块代码 计算机安全 解码方法 算术
作者
Lei Zhu,Xu Lu,Zhiyong Cheng,Jingjing Li,Huaxiang Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 4643-4655 被引量:128
标识
DOI:10.1109/tip.2020.2974065
摘要

Hashing could significantly accelerate large-scale image search by transforming the high-dimensional features into binary Hamming space, where efficient similarity search can be achieved with very fast Hamming distance computation and extremely low storage cost. As an important branch of hashing methods, multi-view hashing takes advantages of multiple features from different views for binary hash learning. However, existing multi-view hashing methods are either based on shallow models which fail to fully capture the intrinsic correlations of heterogeneous views, or unsupervised deep models which suffer from insufficient semantics and cannot effectively exploit the complementarity of view features. In this paper, we propose a novel Deep Collaborative Multi-view Hashing (DCMVH) method to deeply fuse multi-view features and learn multi-view hash codes collaboratively under a deep architecture. DCMVH is a new deep multi-view hash learning framework. It mainly consists of 1) multiple view-specific networks to extract hidden representations of different views, and 2) a fusion network to learn multi-view fused hash code. DCMVH associates different layers with instance-wise and pair-wise semantic labels respectively. In this way, the discriminative capability of representation layers can be progressively enhanced and meanwhile the complementarity of different view features can be exploited effectively. Finally, we develop a fast discrete hash optimization method based on augmented Lagrangian multiplier to efficiently solve the binary hash codes. Experiments on public multi-view image search datasets demonstrate our approach achieves substantial performance improvement over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助zhentg采纳,获得30
1秒前
合适傲白完成签到,获得积分10
1秒前
阳光沛凝完成签到,获得积分10
2秒前
He发布了新的文献求助10
2秒前
化白发布了新的文献求助10
3秒前
lucca完成签到,获得积分10
3秒前
3秒前
jyy应助江月年采纳,获得10
4秒前
传奇3应助武雨寒采纳,获得10
5秒前
6秒前
开放惜寒发布了新的文献求助10
6秒前
充电宝应助咿犽采纳,获得10
7秒前
zeng发布了新的文献求助10
7秒前
尼大王完成签到,获得积分10
9秒前
Jasper应助IchenNG采纳,获得30
10秒前
13秒前
He完成签到,获得积分10
15秒前
景穆发布了新的文献求助10
16秒前
jyy应助江月年采纳,获得10
19秒前
19秒前
lucca发布了新的文献求助10
19秒前
懦弱的含芙完成签到,获得积分20
19秒前
景穆完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
23秒前
爱因斯坦发布了新的文献求助10
23秒前
23秒前
zake完成签到,获得积分10
25秒前
26秒前
Ava应助拔丝香芋采纳,获得10
27秒前
风吹草动玉米粒完成签到,获得积分10
30秒前
30秒前
852应助时尚的青丝采纳,获得10
30秒前
千寻完成签到 ,获得积分10
32秒前
姜水完成签到,获得积分10
38秒前
40秒前
40秒前
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966989
求助须知:如何正确求助?哪些是违规求助? 3512429
关于积分的说明 11163148
捐赠科研通 3247241
什么是DOI,文献DOI怎么找? 1793778
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432