Deep Collaborative Multi-View Hashing for Large-Scale Image Search

散列函数 计算机科学 汉明空间 动态完美哈希 人工智能 通用哈希 理论计算机科学 判别式 图像检索 模式识别(心理学) 汉明距离 特征哈希 哈希表 图像(数学) 二进制代码 双重哈希 机器学习 二进制数 汉明码 算法 数学 计算机安全 解码方法 区块代码 算术
作者
Lei Zhu,Xu Lu,Zhiyong Cheng,Jingjing Li,Huaxiang Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 4643-4655 被引量:106
标识
DOI:10.1109/tip.2020.2974065
摘要

Hashing could significantly accelerate large-scale image search by transforming the high-dimensional features into binary Hamming space, where efficient similarity search can be achieved with very fast Hamming distance computation and extremely low storage cost. As an important branch of hashing methods, multi-view hashing takes advantages of multiple features from different views for binary hash learning. However, existing multi-view hashing methods are either based on shallow models which fail to fully capture the intrinsic correlations of heterogeneous views, or unsupervised deep models which suffer from insufficient semantics and cannot effectively exploit the complementarity of view features. In this paper, we propose a novel Deep Collaborative Multi-view Hashing (DCMVH) method to deeply fuse multi-view features and learn multi-view hash codes collaboratively under a deep architecture. DCMVH is a new deep multi-view hash learning framework. It mainly consists of 1) multiple view-specific networks to extract hidden representations of different views, and 2) a fusion network to learn multi-view fused hash code. DCMVH associates different layers with instance-wise and pair-wise semantic labels respectively. In this way, the discriminative capability of representation layers can be progressively enhanced and meanwhile the complementarity of different view features can be exploited effectively. Finally, we develop a fast discrete hash optimization method based on augmented Lagrangian multiplier to efficiently solve the binary hash codes. Experiments on public multi-view image search datasets demonstrate our approach achieves substantial performance improvement over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
谨慎哈密瓜完成签到,获得积分10
刚刚
朴实的豪完成签到,获得积分20
2秒前
2秒前
Freja发布了新的文献求助10
2秒前
左代灵完成签到,获得积分10
3秒前
znlion完成签到,获得积分10
4秒前
4秒前
xike完成签到,获得积分10
5秒前
6秒前
orixero应助Freja采纳,获得10
8秒前
10秒前
11秒前
嗯哼应助顺利煎蛋采纳,获得100
11秒前
12秒前
13秒前
13秒前
oceanao应助二两采纳,获得10
13秒前
15秒前
16秒前
时尚远山发布了新的文献求助20
16秒前
yu发布了新的文献求助10
16秒前
KSung发布了新的文献求助10
18秒前
李健应助浮游呦呦采纳,获得10
18秒前
笨笨从凝发布了新的文献求助10
18秒前
Lucas应助朱冰蓝采纳,获得10
19秒前
20秒前
坚定以筠发布了新的文献求助10
21秒前
nayogi完成签到,获得积分10
22秒前
24秒前
27秒前
27秒前
大个应助甜甜的寒安采纳,获得10
28秒前
sukasuka发布了新的文献求助10
29秒前
29秒前
李半斤发布了新的文献求助10
30秒前
30秒前
了了发布了新的文献求助20
31秒前
31秒前
熊大发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158244
求助须知:如何正确求助?哪些是违规求助? 2809520
关于积分的说明 7882540
捐赠科研通 2468075
什么是DOI,文献DOI怎么找? 1313863
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601943