摘要
Chapter 5 Doping and Transport Julien Pernot, Julien PernotSearch for more papers by this authorFabrice Donatini, Fabrice DonatiniSearch for more papers by this authorPierre Tchoulfian, Pierre TchoulfianSearch for more papers by this author Julien Pernot, Julien PernotSearch for more papers by this authorFabrice Donatini, Fabrice DonatiniSearch for more papers by this authorPierre Tchoulfian, Pierre TchoulfianSearch for more papers by this author Book Editor(s):Vincent Consonni, Vincent ConsonniSearch for more papers by this authorGuy Feuillet, Guy FeuilletSearch for more papers by this author First published: 30 June 2014 https://doi.org/10.1002/9781118984321.ch5Citations: 1 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter presents an exhaustive method to study the transport properties of doped GaN and ZnO nanowires (NW) and microwires (MW) in light of recent results published in the literature. The chapter first describes an original lithography process perfectly well suited to connect ZnO NW and GaN MW. It then dedicates to the electrical transport techniques, which can be used in the case of NW and MW. An analysis of the carrier mobility extracted from such measurements is discussed and compared to bulk case. A local probe technique based on cathodoluminescence is used to investigate exciton diffusion length and space charge region extension in NW. Bibliography ALLEN M.W., SWARTZ C.H., MYERS T.H., et al., "Bulk transport measurements in ZnO: the effect of surface electron layers", Physical Review B, vol. 81, no. 7, p. 075211, February 2010. 10.1103/PhysRevB.81.075211 CASWeb of Science®Google Scholar BAO J., SHALISH I., SU Z., et al., "Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires", Nanoscale Research Letters, vol. 6, no. 1, p. 404, May 2011. 10.1186/1556-276X-6-404 CASWeb of Science®Google Scholar BERTNESS K., SANFORD N., DAVYDOV A.V., "GaN nanowires grown by molecular beam epitaxy", IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 4, pp. 847–858, July 2011. 10.1109/JSTQE.2010.2082504 CASWeb of Science®Google Scholar BLOMERS C., GRAP T., LEPSA M.I., et al., "Hall effect measurements on InAs nanowires", Applied Physics Letters, vol. 101, no. 15, p. 152106, October 2012. 10.1063/1.4759124 CASWeb of Science®Google Scholar BOLINSSON J., MERGENTHALER K., SAMUELSON L., et al., "Diffusion length measurements in axial and radial heterostructured nanowires using cathodoluminescence", Journal of Crystal Growth, vol. 315, no. 1, pp. 138–142, January 2011. 10.1016/j.jcrysgro.2010.08.054 CASWeb of Science®Google Scholar CHANG P.-C., FAN Z., CHIEN C.-J., et al., "High-performance ZnO nanowire field effect transistors", Applied Physics Letters, vol. 89, no. 13, p. 133113, September 2006. 10.1063/1.2357013 CASWeb of Science®Google Scholar V. CONSONNI, G. FEUILLET, (eds.), Wide Band Gap Semiconductor Nanowires 2: Heterostructures and Optoelectronic Devices, ISTE, London, and John Wiley & Sons, New York, 2014. 10.1002/9781118984291 Google Scholar DONATINI F., DANG L.S., "A single-step electron beam lithography of buried nanostructures using cathodoluminescence imaging and low temperature", Nanotechnology, vol. 21, no. 37, p. 375303, September 2010. 10.1088/0957-4484/21/37/375303 CASWeb of Science®Google Scholar GOLDBERGER J., SIRBULY D.J., LAW M., et al., "ZnO nanowire transistors", The Journal of Physical Chemistry B, vol. 109, no. 1, pp. 9–14, January 2005. 10.1021/jp0452599 CASPubMedWeb of Science®Google Scholar GURWITZ R., SHALISH I., "Method for electrical characterization of nanowires", Nanotechnology, vol. 22, no. 43, p. 435705, October 2011. 10.1088/0957-4484/22/43/435705 CASWeb of Science®Google Scholar GURWITZ R., COHEN R., SHALISH I., "Interaction of light with the ZnO surface: photon induced oxygen breathing, oxygen vacancies, persistent photoconductivity, and persistent photovoltage", Journal of Applied Physics, vol. 115, no. 3, p. 033701, January 2014. 10.1063/1.4861413 CASWeb of Science®Google Scholar GUSTAFSSON A., BJÖRK M.T., SAMUELSON L., "Locating nanowire heterostructures by electron beam induced current", Nanotechnology, vol. 18, no. 20, p. 205306, May 2007. 10.1088/0957-4484/18/20/205306 CASWeb of Science®Google Scholar GUTSCHE C., NIEPELT R., GNAUCK M., et al., "Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p-n junctions", Nano Letters, vol. 12, no. 3, pp. 1453–1458, March 2012. 10.1021/nl204126n CASPubMedWeb of Science®Google Scholar HERNANDEZ-RAMIREZ F., RODRIGUEZ J., CASALS O., et al., "Characterization of metal-oxide nanosensors fabricated with focused ion beam (FIB)", Sensors and Actuators B: Chemical, vol. 118, no. 1–2, pp. 198–203, October 2006. Web of Science®Google Scholar HOWELL S.L., PADALKAR S., YOON K., et al., "Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy", Nano Letters, vol. 13, no. 11, pp. 5123–5128, November 2013. 10.1021/nl402331u CASWeb of Science®Google Scholar HU Y., LIU Y., LI W., et al., "Observation of a 2D electron gas and the tuning of the electrical conductance of ZnO nanowires by controllable surface band-bending", Advanced Functional Materials, vol. 19, no. 15, p. 2380–2387, 2009. 10.1002/adfm.200900179 CASWeb of Science®Google Scholar HU Y., ZHOU J., YEH P.-H., et al., "Supersensitive, fast-response nanowire sensors by using Schottky contacts", Advanced Materials, vol. 22, no. 30, p. 3327–3332, 2010. 10.1002/adma.201000278 CASPubMedWeb of Science®Google Scholar HUANG Y., DUAN X., CUI Y., et al., "Gallium nitride nanowire nanodevices", Nano Letters, vol. 2, no. 2, pp. 101–104, February 2002. 10.1021/nl015667d CASPubMedWeb of Science®Google Scholar HWANG J.-S., DONATINI F., PERNOT J., et al., "Carrier depletion and exciton diffusion in a single ZnO nanowire", Nanotechnology, vol. 22, no. 47, p. 475704, November 2011. 10.1088/0957-4484/22/47/475704 CASWeb of Science®Google Scholar JACOPIN G., BUGALLO A.D.L., LAVENUS P., et al., "Single-wire light-emitting diodes based on GaN wires containing both polar and nonpolar InGaN/GaN quantum wells", Applied Physics Express, vol. 5, no. 1, p. 014101, 2012. 10.1143/APEX.5.014101 CASWeb of Science®Google Scholar JEGANATHAN K., DEBNATH R.K., MEIJERS R., et al., "Raman scattering of phonon-plasmon coupled modes in self-assembled GaN nanowires", Journal of Applied Physics, vol. 105, no. 12, p. 123707, June 2009. 10.1063/1.3148862 CASWeb of Science®Google Scholar JOHANNES A., NIEPELT R., GNAUCK M., et al., "Persistent ion beam induced conductivity in zinc oxide nanowires", Applied Physics Letters, vol. 99, no. 25, p. 252105, December 2011. 10.1063/1.3671164 CASWeb of Science®Google Scholar KIND H., YAN H., MESSER B., et al., "Nanowire ultraviolet photodetectors and optical switches", Advanced Materials, vol. 14, no. 2, p. 158–160, 2002. 10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W CASWeb of Science®Google Scholar LANGFORD R.M., WANG T.-X., THORNTON M., et al., "Comparison of different methods to contact to nanowires", Journal of Vacuum Science & Technology B, vol. 24, no. 5, pp. 2306–2311, September 2006. 10.1116/1.2348731 CASWeb of Science®Google Scholar LEE C.-H., YI G.-C., ZUEV Y.M., et al., "Thermoelectric power measurements of wide band gap semiconducting nanowires", Applied Physics Letters, vol. 94, no. 2, p. 022106, January 2009. 10.1063/1.3067868 CASWeb of Science®Google Scholar LIKOVICH E.M., RUSSELL K.J., PETERSEN E.W., et al., "Weak localization and mobility in ZnO nanostructures", Physical Review B, vol. 80, no. 24, p. 245318, December 2009. 10.1103/PhysRevB.80.245318 CASWeb of Science®Google Scholar LIN Y., WANG D., ZHAO Q., et al., "Influence of adsorbed oxygen on the surface photovoltage and photoluminescence of ZnO nanorods", Nanotechnology, vol. 17, no. 9, p. 2110, May 2006. 10.1088/0957-4484/17/9/006 CASWeb of Science®Google Scholar LONG R., CHEN J., LIM J.-H., et al., "Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures", Nanotechnology, vol. 20, no. 28, p. 285306, July 2009. 10.1088/0957-4484/20/28/285306 CASPubMedWeb of Science®Google Scholar LOOK D.C., SIZELOVE J.R., "Predicted maximum mobility in bulk GaN", Applied Physics Letters, vol. 79, no. 8, pp. 1133–1135, August 2001. 10.1063/1.1394954 CASWeb of Science®Google Scholar LORD A.M., MAFFEIS T.G., WALTON A.S., et al., "Factors that determine and limit the resistivity of high-quality individual ZnO nanowires", Nanotechnology, vol. 24, no. 43, p. 435706, November 2013. 10.1088/0957-4484/24/43/435706 CASWeb of Science®Google Scholar LU Y.-J., LU M.-Y., YANG Y.-C., et al., "Dynamic visualization of axial p-n junctions in single gallium nitride nanorods under electrical bias", ACS Nano, vol. 7, no. 9, pp. 7640–7647, September 2013. 10.1021/nn4034986 CASWeb of Science®Google Scholar MAKINO T., SEGAWA Y., TSUKAZAKI A., et al., "Electron transport in ZnO thin films", Applied Physics Letters, vol. 87, no. 2, p. 022101, July 2005. 10.1063/1.1991994 CASWeb of Science®Google Scholar MOTAYED A., VAUDIN M., DAVYDOV A.V., et al., "Diameter dependent transport properties of gallium nitride nanowire field effect transistors", Applied Physics Letters, vol. 90, no. 4, p. 043104, January 2007. 10.1063/1.2434153 CASWeb of Science®Google Scholar NOLAS G.S., SHARP J., GOLDSMID H.J., Thermoelectrics: Basic Principles and New Materials Developments, Springer series in materials science, vol. 45, Springer, Berlin, London, 2001. 10.1007/978-3-662-04569-5 Google Scholar PARK W.I., KIM J.S., YI G.-C., et al., "Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors", Applied Physics Letters, vol. 85, no. 21, pp. 5052–5054, November 2004. 10.1063/1.1821648 CASWeb of Science®Google Scholar PARK W., HONG W.-K., JO G., et al., "Tuning of operation mode of ZnO nanowire field effect transistors by solvent-driven surface treatment", Nanotechnology, vol. 20, no. 47, p. 475702, November 2009. 10.1088/0957-4484/20/47/475702 CASWeb of Science®Google Scholar PARKINSON P., DODSON C., JOYCE H.J., et al., "Noncontact measurement of charge carrier lifetime and mobility in GaN nanowires", Nano Letters, vol. 12, no. 9, pp. 4600–4604, September 2012. 10.1021/nl301898m CASWeb of Science®Google Scholar PEREA D.E., HEMESATH E.R., SCHWALBACH E.J., et al., "Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire", Nature Nanotechnology, vol. 4, no. 5, pp. 315–319, May 2009. 10.1038/nnano.2009.51 CASPubMedWeb of Science®Google Scholar RICHTER T., MEIJERS H. L.R., CALARCO R., et al., "Doping concentration of GaN nanowires determined by opto-electrical measurements", Nano Letters, vol. 8, no. 9, pp. 3056–3059, September 2008. 10.1021/nl8014395 CASPubMedWeb of Science®Google Scholar RIGUTTI L., BLUM I., SHINDE D., et al., "Correlation of microphotoluminescence spectroscopy, scanning transmission electron microscopy, and atom probe tomography on a single nano-object containing an InGaN/GaN multiquantum well system", Nano Letters, vol. 14, no. 1, pp. 107–114, January 2014. 10.1021/nl4034768 CASPubMedWeb of Science®Google Scholar RILEY J.R., PADALKAR S., LI Q., et al., "Three-dimensional mapping of quantum wells in a GaN/InGaN core-shell nanowire light-emitting diode array", Nano Letters, vol. 13, no. 9, pp. 4317–4325, September 2013. 10.1021/nl4021045 CASWeb of Science®Google Scholar SANFORD N.A., ROBINS L.H., BLANCHARD P.T., et al., "Studies of photoconductivity and field effect transistor behavior in examining drift mobility, surface depletion, and transient effects in Si-doped GaN nanowires in vacuum and air", Journal of Applied Physics, vol. 113, no. 17, p. 174306, May 2013. 10.1063/1.4802689 CASWeb of Science®Google Scholar SCHLENKER E., BAKIN A., WEIMANN T., et al., "On the difficulties in characterizing ZnO nanowires", Nanotechnology, vol. 19, no. 36, p. 365707, September 2008. 10.1088/0957-4484/19/36/365707 CASWeb of Science®Google Scholar SCHMIDT V., MENSCH P. F.J., KARG S.F., et al., "Using the Seebeck coefficient to determine charge carrier concentration, mobility, and relaxation time in InAs nanowires", Applied Physics Letters, vol. 104, no. 1, p. 012113, January 2014. 10.1063/1.4858936 CASWeb of Science®Google Scholar SHOKHOVETS S., AMBACHER O., MEYER B.K., et al., "Anisotropy of the momentum matrix element, dichroism, and conduction-band dispersion relation of wurtzite semiconductors", Physical Review B, vol. 78, no. 3, p. 035207, July 2008. 10.1103/PhysRevB.78.035207 CASWeb of Science®Google Scholar SOUDI A., DHAKAL P., GU Y., "Diameter dependence of the minority carrier diffusion length in individual ZnO nanowires", Applied Physics Letters, vol. 96, no. 25, p. 253115, June 2010. 10.1063/1.3456390 CASWeb of Science®Google Scholar SOUDI A., HSU C.-H., GU Y., "Diameter-dependent surface photovoltage and surface state density in single semiconductor nanowires", Nano Letters, vol. 12, no. 10, pp. 5111–5116, October 2012. 10.1021/nl301863e CASWeb of Science®Google Scholar STERN E., CHENG G., CIMPOIASU E., et al., "Electrical characterization of single GaN nanowires", Nanotechnology, vol. 16, no. 12, p. 2941, December 2005. 10.1088/0957-4484/16/12/037 CASWeb of Science®Google Scholar STORM K., HALVARDSSON F., HEURLIN M., et al., "Spatially resolved Hall effect measurement in a single semiconductor nanowire", Nature Nanotechnology, vol. 7, no. 11, pp. 718–722, November 2012. 10.1038/nnano.2012.190 CASPubMedWeb of Science®Google Scholar TALIN A.A., LÉONARD F., KATZENMEYER A.M., et al., "Transport characterization in nanowires using an electrical nanoprobe", Semiconductor Science and Technology, vol. 25, no. 2, p. 024015, February 2010. 10.1088/0268-1242/25/2/024015 CASWeb of Science®Google Scholar TCHOULFIAN P., DONATINI F., LEVY F., et al., "Thermoelectric and micro- Raman measurements of carrier density and mobility in heavily Si-doped GaN wires", Applied Physics Letters, vol. 103, no. 20, p. 202101, November 2013. 10.1063/1.4829857 CASWeb of Science®Google Scholar TCHOULFIAN P., DONATINI F., LEVY F., et al., "High conductivity in Si-doped GaN wires", Applied Physics Letters, vol. 102, no. 12, p. 122116, March 2013. 10.1063/1.4799167 CASWeb of Science®Google Scholar TCHOULFIAN P., DONATINI F., LEVY F., et al., " Direct imaging of p–n Junction in Core–Shell GaN Wires", Nano Lett., May 2014. Web of Science®Google Scholar YANG W.Q., DAI L., MA R.M., et al., "Back-gate ZnO nanowire field-effect transistors each with a top shaped Au contact", Applied Physics Letters, vol. 93, no. 3, p. 033102, July 2008. 10.1063/1.2959075 CASWeb of Science®Google Scholar ZHAO S., FATHOLOLOUMI S., BEVAN K.H., et al., "Tuning the surface charge properties of epitaxial InN nanowires", Nano Letters, vol. 12, no. 6, pp. 2877–2882, June 2012. 10.1021/nl300476d CASWeb of Science®Google Scholar ZIMMLER M.A., STICHTENOTH D., RONNING C., et al., "Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass", Nano Letters, vol. 8, no. 6, pp. 1695–1699, June 2008. 10.1021/nl080627w PubMedWeb of Science®Google Scholar Citing Literature Wide Band Gap Semiconductor Nanowires 1: Low‐Dimensionality Effects and Growth ReferencesRelatedInformation