贝叶斯定理
电池(电)
航程(航空)
电感耦合等离子体质谱法
算法
分析化学(期刊)
化学
质谱法
数学
色谱法
材料科学
统计
物理
贝叶斯概率
复合材料
功率(物理)
量子力学
作者
Rommel Barbosa,Letícia Ramos Nacano,Rodolfo de Freitas,Bruno Lemos Batista,Fernando Barbosa
标识
DOI:10.1111/1750-3841.12577
摘要
Abstract This article aims to evaluate 2 machine learning algorithms, decision trees and naïve Bayes (NB), for egg classification (free‐range eggs compared with battery eggs). The database used for the study consisted of 15 chemical elements (As, Ba, Cd, Co, Cs, Cu, Fe, Mg, Mn, Mo, Pb, Se, Sr, V, and Zn) determined in 52 eggs samples (20 free‐range and 32 battery eggs) by inductively coupled plasma mass spectrometry. Our results demonstrated that decision trees and NB associated with the mineral contents of eggs provide a high level of accuracy (above 80% and 90%, respectively) for classification between free‐range and battery eggs and can be used as an alternative method for adulteration evaluation.
科研通智能强力驱动
Strongly Powered by AbleSci AI