MDA5型
TLR3型
RNA沉默
生物
核糖核酸
先天免疫系统
钻机-I
模式识别受体
细胞生物学
解旋酶
RNA解旋酶A
RNA干扰
Toll样受体
受体
遗传学
基因
作者
Ian C. Berke,Yue Li,Yorgo Modis
摘要
Viral RNA is recognized by innate immune receptors from two different families. In endolysosomal compartments, Toll-like receptors (TLRs) 3, 7 and 8 recognize either double-stranded RNA (dsRNA) or single-stranded RNA. In the cytoplasm, viral genomic RNA or transcriptional intermediates are recognized by DExD/H-box helicases RIG-I and MDA5. Recent structural studies of these RNA sensors have provided atomic-level insight into the recognition mechanism of viral RNA. TLR3 dimerizes around a straight 45-bp stretch of dsRNA, explaining the length requirement of at least 40 bp for dsRNA recognition. RIG-I recognizes blunt ends of dsRNA with 5′-triphosphate caps. Ligand binding releases RIG-I from a closed autoinhibited state, exposing the CARD signalling domains. MDA5 recognizes long dsRNA by cooperatively assembling into helical filaments. RNA recognition by RIG-I and MDA5 triggers assembly of their common downstream signalling adaptor MAVS from its inactive monomeric form into its active polymeric form. While RIG-I and MDA5 appear to activate MAVS via distinct oligomerization mechanisms, a common paradigm is emerging in innate immunity for signal transduction by oligomerization-dependent signalling platforms. Many open questions remain including the role of proteolytic activation in RNA recognition by TLR3 and how unanchored ubiquitin chains contribute to RNA recognition by RIG-I and MDA5.
科研通智能强力驱动
Strongly Powered by AbleSci AI