High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture

电解质 材料科学 电极 多孔性 制作 锂(药物) 纳米技术 化学工程 光电子学 复合材料 医学 工程类 内分泌学 病理 物理化学 化学 替代医学
作者
Gregory T. Hitz,Dennis W. McOwen,Lei Zhang,Zhaohui Ma,Zhezhen Fu,Wen Yang,Yunhui Gong,Jiaqi Dai,Tanner Hamann,Liangbing Hu,Eric D. Wachsman
出处
期刊:Materials Today [Elsevier]
卷期号:22: 50-57 被引量:248
标识
DOI:10.1016/j.mattod.2018.04.004
摘要

Solid-state lithium batteries promise to exceed the capabilities of traditional Li-ion batteries in safety and performance. However, a number of obstacles have stood in the path of solid-state battery development, primarily high resistance and low capacity. In this work, these barriers are overcome through the fabrication of a uniquely microstructured solid electrolyte architecture based on a doped Li7La3Zr2O12 (LLZ) ceramic Li-conductor. Specifically, a porous-dense-porous trilayer structure was fabricated by tape casting, a scalable roll-to-roll manufacturing technique. The dense (>99%) center layer can be fabricated as thin as ∼10 μm and blocks dendrites over hundreds of cycles. The microstructured porous layers serve as electrode supports and increase the mechanical strength by ∼9×, making the cells strong enough to handle with ease. Additionally, the porous layers multiply the electrode–electrolyte interfacial surface area by >40× compared to a typical planar interface. Lithium symmetric cells based on the trilayer architecture were cycled at room temperature and achieved area-specific resistances (∼7 Ω-cm2) dramatically lower, and current densities dramatically higher (10 mA/cm2), than previously reported literature results. Moreover, to demonstrate scalability a large-format cell was fabricated with lithium metal in one porous layer and a sulfur electrode with conductive carbon and an ionic liquid interface in the other, achieving 1244 mAh/g S utilization and 195 Wh/kg based on total cell mass, showing a promising path to commercially viable, intrinsically safe lithium batteries with high specific energy and high energy density.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bella1201完成签到,获得积分10
1秒前
lucky完成签到,获得积分10
1秒前
ding应助勤奋的四娘采纳,获得10
2秒前
2秒前
toda_erica发布了新的文献求助10
2秒前
5秒前
赘婿应助受伤自行车采纳,获得10
6秒前
浮云完成签到,获得积分10
6秒前
宜醉宜游宜睡应助pangpang采纳,获得10
6秒前
Ethan发布了新的文献求助10
7秒前
蝶舞天涯完成签到,获得积分10
8秒前
9秒前
Chief完成签到,获得积分10
10秒前
崔小熊完成签到,获得积分10
11秒前
初淇完成签到,获得积分10
12秒前
qmx完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
14秒前
15秒前
随逸完成签到,获得积分10
15秒前
刘桑桑发布了新的文献求助10
17秒前
18秒前
18秒前
dingminfeng完成签到 ,获得积分10
18秒前
18秒前
scihub111发布了新的文献求助10
18秒前
19秒前
toda_erica完成签到,获得积分20
19秒前
fafafasci完成签到,获得积分10
19秒前
moon完成签到,获得积分10
19秒前
舒适的梦玉完成签到,获得积分10
20秒前
好好的i完成签到,获得积分10
21秒前
dingminfeng关注了科研通微信公众号
23秒前
FashionBoy应助优美的代荷采纳,获得10
23秒前
标致小翠完成签到,获得积分10
23秒前
权翼完成签到,获得积分10
24秒前
Jun完成签到 ,获得积分10
24秒前
hahaha完成签到,获得积分10
24秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2997908
求助须知:如何正确求助?哪些是违规求助? 2658557
关于积分的说明 7196855
捐赠科研通 2293987
什么是DOI,文献DOI怎么找? 1216412
科研通“疑难数据库(出版商)”最低求助积分说明 593516
版权声明 592888