High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture

电解质 材料科学 电极 多孔性 制作 锂(药物) 纳米技术 化学工程 光电子学 复合材料 医学 工程类 内分泌学 病理 物理化学 化学 替代医学
作者
Gregory T. Hitz,Dennis W. McOwen,Lei Zhang,Zhaohui Ma,Zhezhen Fu,Wen Yang,Yunhui Gong,Jiaqi Dai,Tanner Hamann,Liangbing Hu,Eric D. Wachsman
出处
期刊:Materials Today [Elsevier]
卷期号:22: 50-57 被引量:291
标识
DOI:10.1016/j.mattod.2018.04.004
摘要

Solid-state lithium batteries promise to exceed the capabilities of traditional Li-ion batteries in safety and performance. However, a number of obstacles have stood in the path of solid-state battery development, primarily high resistance and low capacity. In this work, these barriers are overcome through the fabrication of a uniquely microstructured solid electrolyte architecture based on a doped Li7La3Zr2O12 (LLZ) ceramic Li-conductor. Specifically, a porous-dense-porous trilayer structure was fabricated by tape casting, a scalable roll-to-roll manufacturing technique. The dense (>99%) center layer can be fabricated as thin as ∼10 μm and blocks dendrites over hundreds of cycles. The microstructured porous layers serve as electrode supports and increase the mechanical strength by ∼9×, making the cells strong enough to handle with ease. Additionally, the porous layers multiply the electrode–electrolyte interfacial surface area by >40× compared to a typical planar interface. Lithium symmetric cells based on the trilayer architecture were cycled at room temperature and achieved area-specific resistances (∼7 Ω-cm2) dramatically lower, and current densities dramatically higher (10 mA/cm2), than previously reported literature results. Moreover, to demonstrate scalability a large-format cell was fabricated with lithium metal in one porous layer and a sulfur electrode with conductive carbon and an ionic liquid interface in the other, achieving 1244 mAh/g S utilization and 195 Wh/kg based on total cell mass, showing a promising path to commercially viable, intrinsically safe lithium batteries with high specific energy and high energy density.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
当下最好发布了新的文献求助10
刚刚
1秒前
lovelana发布了新的文献求助10
1秒前
缓慢的孱应助帅气的襄采纳,获得30
2秒前
达尔文完成签到 ,获得积分10
2秒前
2秒前
大可发布了新的文献求助10
2秒前
香蕉觅云应助风清扬采纳,获得10
2秒前
2秒前
3秒前
我是老大应助粗心的蜜蜂采纳,获得10
3秒前
4秒前
帕金森发布了新的文献求助10
4秒前
羊青发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
那迪娅完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
坨坨发布了新的文献求助10
9秒前
weapon发布了新的文献求助10
10秒前
xuxiuwei完成签到,获得积分10
10秒前
10秒前
大模型应助liberty采纳,获得10
10秒前
11秒前
小刀发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
13秒前
Rita完成签到,获得积分10
13秒前
13秒前
粗心的蜜蜂完成签到,获得积分10
14秒前
15秒前
雏菊发布了新的文献求助10
15秒前
搜集达人应助檬沫熙采纳,获得10
15秒前
bingo驳回了棋士应助
16秒前
Rita发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684634
求助须知:如何正确求助?哪些是违规求助? 5037948
关于积分的说明 15184748
捐赠科研通 4843860
什么是DOI,文献DOI怎么找? 2596968
邀请新用户注册赠送积分活动 1549572
关于科研通互助平台的介绍 1508077