Nonlinear Unmixing of Hyperspectral Data via Deep Autoencoder Networks

自编码 高光谱成像 人工智能 非线性系统 计算机科学 深度学习 模式识别(心理学) 人工神经网络 编码器 方案(数学) 图像(数学) 数据建模 算法 数学 数据库 操作系统 物理 数学分析 量子力学
作者
Mou Wang,Min Zhao,Jie Chen,Susanto Rahardja
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:16 (9): 1467-1471 被引量:79
标识
DOI:10.1109/lgrs.2019.2900733
摘要

Nonlinear spectral unmixing is an important and challenging problem in hyperspectral image processing. Classical nonlinear algorithms are usually derived based on specific assumptions on the nonlinearity. In recent years, deep learning shows its advantage in addressing general nonlinear problems. However, existing ways of using deep neural networks for unmixing are limited and restrictive. In this letter, we develop a novel blind hyperspectral unmixing scheme based on a deep autoencoder network. Both encoder and decoder of the network are carefully designed so that we can conveniently extract estimated endmembers and abundances simultaneously from the nonlinearly mixed data. Because an autoencoder is essentially an unsupervised algorithm, this scheme only relies on the current data and, therefore, does not require additional training. Experimental results validate the proposed scheme and show its superior performance over several existing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linkman发布了新的文献求助30
2秒前
2秒前
飘逸小懒猪应助和谐幻柏采纳,获得20
3秒前
jerry发布了新的文献求助10
4秒前
xrose完成签到 ,获得积分10
4秒前
隐形曼青应助银银采纳,获得10
5秒前
pioneer完成签到,获得积分10
6秒前
zg完成签到,获得积分10
7秒前
大模型应助jerry采纳,获得10
9秒前
冷酷雅容发布了新的文献求助20
9秒前
Hannah完成签到,获得积分10
9秒前
9秒前
10秒前
yar应助心心采纳,获得10
10秒前
哈哈完成签到 ,获得积分10
11秒前
11秒前
12秒前
现代书雪发布了新的文献求助40
12秒前
李爱国应助可爱香槟采纳,获得20
12秒前
wtl发布了新的文献求助10
15秒前
支半雪发布了新的文献求助10
15秒前
dyd完成签到,获得积分10
15秒前
慕青应助ZH采纳,获得10
16秒前
超级飞侠发布了新的文献求助10
17秒前
17秒前
Mottri完成签到 ,获得积分10
17秒前
17秒前
勇敢的媛完成签到,获得积分10
18秒前
19秒前
19秒前
爱听歌白薇完成签到 ,获得积分20
21秒前
fsky发布了新的文献求助10
23秒前
23秒前
24秒前
小可爱发布了新的文献求助10
25秒前
25秒前
任长岳完成签到 ,获得积分10
25秒前
冷酷雅容完成签到,获得积分10
26秒前
27秒前
可爱香槟发布了新的文献求助20
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432