A Unified Spatio-Temporal Model for Short-Term Traffic Flow Prediction

流量(计算机网络) 计算机科学 自回归模型 交通生成模型 期限(时间) 相关性 数据挖掘 时间序列 变化(天文学) 智能交通系统 人工智能 模拟 算法 实时计算 机器学习 工程类 数学 统计 物理 计算机安全 量子力学 几何学 土木工程 天体物理学
作者
Peibo Duan,Guoqiang Mao,Weifa Liang,Degan Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:20 (9): 3212-3223 被引量:106
标识
DOI:10.1109/tits.2018.2873137
摘要

This paper proposes a unified spatio-temporal model for short-term road traffic prediction. The contributions of this paper are as follows. First, we develop a physically intuitive approach to traffic prediction that captures the time-varying spatio-temporal correlation between traffic at different measurement points. The spatio-temporal correlation is affected by the road network topology, time-varying speed, and time-varying trip distribution. Distinctly different from previous black-box approaches to road traffic modeling and prediction, parameters of the proposed approach have physically intuitive meanings which make them readily amendable to suit changing road and traffic conditions. Second, unlike some existing techniques that capture the variation of spatio-temporal correlation by a complete re-design and calibration of the model, the proposed approach uses a unified model that incorporates the physical factors potentially affecting the variation of spatio-temporal correlation into a series of parameters. These parameters are relatively easy to control and adjust when road and traffic conditions change, thereby greatly reducing the computational complexity. Experiments using two sets of real traffic traces demonstrate that the proposed approach has superior accuracy compared with the widely used space-time autoregressive integrated moving average (STARIMA) and the back propagation neural network approaches, and is only marginally inferior to that obtained by constructing multiple STARIMA models for different times of the day, however, with a much reduced computational and implementation complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄瓜双耳拌腐竹完成签到,获得积分10
刚刚
zby发布了新的文献求助10
刚刚
Rondab应助ljc采纳,获得10
1秒前
2秒前
ranjeah完成签到 ,获得积分10
2秒前
3秒前
层积云关注了科研通微信公众号
5秒前
5秒前
6秒前
7秒前
hushidi发布了新的文献求助10
9秒前
胖头鱼完成签到,获得积分10
11秒前
车厘子发布了新的文献求助10
12秒前
Akim应助研究生吗喽采纳,获得10
13秒前
花椒小透明完成签到,获得积分20
14秒前
wangqing发布了新的文献求助10
15秒前
小王发布了新的文献求助10
18秒前
19秒前
20秒前
桐桐应助HonamC采纳,获得10
22秒前
橙浅完成签到,获得积分10
23秒前
炙热莫言完成签到,获得积分20
23秒前
ling_lz发布了新的文献求助10
24秒前
我是老大应助超人采纳,获得10
26秒前
26秒前
zhangyu应助三毛采纳,获得10
26秒前
CipherSage应助郭郭采纳,获得10
27秒前
炙热莫言发布了新的文献求助20
28秒前
淼吉发布了新的文献求助10
28秒前
28秒前
lvxinyan完成签到,获得积分10
29秒前
30秒前
31秒前
归尘发布了新的文献求助10
32秒前
等待的夜香完成签到,获得积分10
34秒前
Chimmy发布了新的文献求助10
35秒前
YAO发布了新的文献求助10
35秒前
water应助薛定谔的猫采纳,获得10
36秒前
HonamC发布了新的文献求助10
37秒前
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712