材料科学
阳极
粒径
球磨机
石墨
X射线光电子能谱
碳纤维
涂层
粒度分布
复合数
纳米颗粒
化学工程
粒子(生态学)
透射电子显微镜
电化学
复合材料
纳米技术
化学
电极
物理化学
工程类
地质学
海洋学
作者
Isaac Capone,Kevin Hurlbutt,Andrew J. Naylor,Albert W. Xiao,Mauro Pasta
出处
期刊:Energy & Fuels
[American Chemical Society]
日期:2019-04-09
卷期号:33 (5): 4651-4658
被引量:36
标识
DOI:10.1021/acs.energyfuels.9b00385
摘要
Red phosphorus (RP) is a promising candidate as an anode for sodium-ion batteries because of its low potential and high specific capacity. It has two main disadvantages. First, it experiences 490% volumetric expansion during sodiation, which leads to particle pulverization and substantial reduction of the cycle life. Second, it has an extremely low electronic conductivity of 10–14 S cm–1. Both issues can be addressed by ball milling RP with a carbon matrix to form a composite of electronically conductive carbon and small RP particles, less susceptible to pulverization. Through this procedure, however, the resulting particle-size distribution of the RP particles is difficult to determine because of the presence of the carbon particles. Here, we quantify the relationship between the RP particle-size distribution and its cycle life for the first time by separating the ball-milling process into two steps. The RP is first wet-milled to reduce the particle size, and then the particle-size distribution is measured via dynamic light scattering. This is followed by a dry-milling step to produce RP–graphite composites. We found that wet milling breaks apart the largest RP particles in the range of 2–10 μm, decreases the Dv90 from 1.85 to 1.26 μm, and significantly increases the cycle life of the RP. Photoelectron spectroscopy and transmission electron microscopy confirm the successful formation of a carbon coating, with longer milling times leading to more uniform carbon coatings. The RP with a Dv90 of 0.79 μm mixed with graphite for 48 h delivered 1354 mA h g–1 with high coulombic efficiency (>99%) and cyclability (88% capacity retention after 100 cycles). These results are an important step in the development of cyclable, high-capacity anodes for sodium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI