An Attention-Based Spatiotemporal LSTM Network for Next POI Recommendation

计算机科学 人工智能 计算机网络
作者
Liwei Huang,Yutao Ma,Shibo Wang,Liu Yan-bo
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (6): 1585-1597 被引量:152
标识
DOI:10.1109/tsc.2019.2918310
摘要

Next point-of-interest (POI) recommendation, also known as a natural extension of general POI recommendation, is recently proposed to predict user's next destination and has attracted considerable research interest. It focuses on learning users' sequential patterns of check-in behavior and on training personalized recommendation models using different types of contextual information. Unfortunately, most of the previous studies failed to incorporate the spatiotemporal contextual information, which plays a critical role in analyzing user check-in behavior, into recommending the next POI. In recent years, embedding learning and recurrent neural network (RNN) based approaches show promising performance for modeling sequential patterns of check-in behavior in next POI recommendation. However, not all of the historical check-in records contribute equally to the next-step check-in behavior. To provide better next POI recommendation performance, we first proposed a spatiotemporal long and short-term memory (ST-LSTM) network. By feeding the spatiotemporal contextual information into the LSTM network in each step, ST-LSTM can model the spatial and temporal information better. Also, we developed an attention-based spatiotemporal LSTM (ATST-LSTM) network for next POI recommendation. By using the attention mechanism, ATST-LSTM can focus on the relevant historical check-in records in a check-in sequence selectively using the spatiotemporal contextual information. Besides, we conducted a comprehensive performance evaluation using large-scale real-world datasets collected from two popular location-based social networks, namely Gowalla and Brightkite. Experimental results indicated that the proposed ATST-LSTM network outperformed two state-of-the-art next POI recommendation approaches regarding three commonly-used evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奥特超曼应助天边采纳,获得10
4秒前
5秒前
7秒前
7秒前
好的番茄loconte完成签到,获得积分10
7秒前
8秒前
贪玩星发布了新的文献求助10
10秒前
薛家泰完成签到 ,获得积分10
10秒前
驾驶人意图预测完成签到,获得积分10
11秒前
砰砰完成签到 ,获得积分10
12秒前
13秒前
赘婿应助好的番茄loconte采纳,获得10
13秒前
小蘑菇应助Cookies采纳,获得10
13秒前
pgdddh发布了新的文献求助10
14秒前
橙子发布了新的文献求助10
16秒前
18秒前
dd完成签到,获得积分10
20秒前
21秒前
bkagyin应助受伤翠容采纳,获得10
22秒前
吴亦凡女朋友完成签到,获得积分10
23秒前
啾栖发布了新的文献求助30
24秒前
时尚战斗机应助wang采纳,获得10
25秒前
恍若发布了新的文献求助10
26秒前
我又可以了完成签到,获得积分10
29秒前
陈思完成签到,获得积分10
30秒前
Lzt发布了新的文献求助10
31秒前
31秒前
孙福禄应助恍若采纳,获得10
34秒前
36秒前
善学以致用应助李李李采纳,获得10
37秒前
陈杭鑫应助lc采纳,获得10
38秒前
merrylake完成签到 ,获得积分10
38秒前
38秒前
ccccccc发布了新的文献求助10
38秒前
无情向薇发布了新的文献求助10
41秒前
42秒前
临澈完成签到,获得积分10
43秒前
44秒前
csj发布了新的文献求助10
44秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652