An Attention-Based Spatiotemporal LSTM Network for Next POI Recommendation

计算机科学 人工智能 计算机网络
作者
Liwei Huang,Yutao Ma,Shibo Wang,Liu Yan-bo
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (6): 1585-1597 被引量:152
标识
DOI:10.1109/tsc.2019.2918310
摘要

Next point-of-interest (POI) recommendation, also known as a natural extension of general POI recommendation, is recently proposed to predict user's next destination and has attracted considerable research interest. It focuses on learning users' sequential patterns of check-in behavior and on training personalized recommendation models using different types of contextual information. Unfortunately, most of the previous studies failed to incorporate the spatiotemporal contextual information, which plays a critical role in analyzing user check-in behavior, into recommending the next POI. In recent years, embedding learning and recurrent neural network (RNN) based approaches show promising performance for modeling sequential patterns of check-in behavior in next POI recommendation. However, not all of the historical check-in records contribute equally to the next-step check-in behavior. To provide better next POI recommendation performance, we first proposed a spatiotemporal long and short-term memory (ST-LSTM) network. By feeding the spatiotemporal contextual information into the LSTM network in each step, ST-LSTM can model the spatial and temporal information better. Also, we developed an attention-based spatiotemporal LSTM (ATST-LSTM) network for next POI recommendation. By using the attention mechanism, ATST-LSTM can focus on the relevant historical check-in records in a check-in sequence selectively using the spatiotemporal contextual information. Besides, we conducted a comprehensive performance evaluation using large-scale real-world datasets collected from two popular location-based social networks, namely Gowalla and Brightkite. Experimental results indicated that the proposed ATST-LSTM network outperformed two state-of-the-art next POI recommendation approaches regarding three commonly-used evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jenny应助yan123采纳,获得10
刚刚
狂野的以珊完成签到,获得积分10
刚刚
刚刚
a1oft发布了新的文献求助10
1秒前
1秒前
1秒前
笨笨的不斜完成签到,获得积分10
1秒前
xtqgyy发布了新的文献求助10
1秒前
2秒前
Cat完成签到,获得积分0
2秒前
科研小菜完成签到,获得积分10
3秒前
江南烟雨如笙完成签到,获得积分10
3秒前
3秒前
stt关闭了stt文献求助
3秒前
4秒前
yangang发布了新的文献求助10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
zhui发布了新的文献求助10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
文献缺缺应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得30
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
清爽老九应助科研通管家采纳,获得10
5秒前
5秒前
JamesPei应助李知恩采纳,获得10
5秒前
shouyu29应助科研通管家采纳,获得10
6秒前
朝天完成签到,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794