An Attention-Based Spatiotemporal LSTM Network for Next POI Recommendation

计算机科学 人工智能 计算机网络
作者
Liwei Huang,Yutao Ma,Shibo Wang,Liu Yan-bo
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (6): 1585-1597 被引量:152
标识
DOI:10.1109/tsc.2019.2918310
摘要

Next point-of-interest (POI) recommendation, also known as a natural extension of general POI recommendation, is recently proposed to predict user's next destination and has attracted considerable research interest. It focuses on learning users' sequential patterns of check-in behavior and on training personalized recommendation models using different types of contextual information. Unfortunately, most of the previous studies failed to incorporate the spatiotemporal contextual information, which plays a critical role in analyzing user check-in behavior, into recommending the next POI. In recent years, embedding learning and recurrent neural network (RNN) based approaches show promising performance for modeling sequential patterns of check-in behavior in next POI recommendation. However, not all of the historical check-in records contribute equally to the next-step check-in behavior. To provide better next POI recommendation performance, we first proposed a spatiotemporal long and short-term memory (ST-LSTM) network. By feeding the spatiotemporal contextual information into the LSTM network in each step, ST-LSTM can model the spatial and temporal information better. Also, we developed an attention-based spatiotemporal LSTM (ATST-LSTM) network for next POI recommendation. By using the attention mechanism, ATST-LSTM can focus on the relevant historical check-in records in a check-in sequence selectively using the spatiotemporal contextual information. Besides, we conducted a comprehensive performance evaluation using large-scale real-world datasets collected from two popular location-based social networks, namely Gowalla and Brightkite. Experimental results indicated that the proposed ATST-LSTM network outperformed two state-of-the-art next POI recommendation approaches regarding three commonly-used evaluation metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁昆发布了新的文献求助10
刚刚
刚刚
TinTin发布了新的文献求助10
1秒前
1秒前
科研通AI6应助BENRONG采纳,获得10
2秒前
2秒前
今后应助侠客采纳,获得10
2秒前
完美世界应助刘一一采纳,获得10
3秒前
情怀应助油条狗采纳,获得10
3秒前
fu完成签到,获得积分10
4秒前
4秒前
cc251672发布了新的文献求助10
5秒前
只爱LJT发布了新的文献求助10
5秒前
小J应助锅巴采纳,获得10
6秒前
6秒前
7秒前
李健应助天音法里奈采纳,获得10
8秒前
科目三应助rattlebox321采纳,获得10
9秒前
9秒前
9秒前
10秒前
老实奇迹发布了新的文献求助10
11秒前
11秒前
Pioneer完成签到 ,获得积分10
11秒前
12秒前
123发布了新的文献求助10
12秒前
12秒前
七叶树完成签到,获得积分10
12秒前
zhouxuefeng完成签到,获得积分10
13秒前
英吉利25发布了新的文献求助10
13秒前
13秒前
唐文硕发布了新的文献求助10
13秒前
侠客发布了新的文献求助10
14秒前
14秒前
lxt完成签到,获得积分10
15秒前
15秒前
Zx_1993应助wackykao采纳,获得10
16秒前
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175