PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges

偶极子 从头算 人工神经网络 计算机科学 静电学 可扩展性 统计物理学 物理 人工智能 量子力学 数据库
作者
Oliver T. Unke,Markus Meuwly
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:15 (6): 3678-3693 被引量:779
标识
DOI:10.1021/acs.jctc.9b00181
摘要

In recent years, machine learning (ML) methods have become increasingly popular in computational chemistry. After being trained on appropriate ab initio reference data, these methods allow to accurately predict the properties of chemical systems, circumventing the need for explicitly solving the electronic Schr\"odinger equation. Because of their computational efficiency and scalability to large datasets, deep neural networks (DNNs) are a particularly promising ML algorithm for chemical applications. This work introduces PhysNet, a DNN architecture designed for predicting energies, forces and dipole moments of chemical systems. PhysNet achieves state-of-the-art performance on the QM9, MD17 and ISO17 benchmarks. Further, two new datasets are generated in order to probe the performance of ML models for describing chemical reactions, long-range interactions, and condensed phase systems. It is shown that explicitly including electrostatics in energy predictions is crucial for a qualitatively correct description of the asymptotic regions of a potential energy surface (PES). PhysNet models trained on a systematically constructed set of small peptide fragments (at most eight heavy atoms) are able to generalize to considerably larger proteins like deca-alanine (Ala$_{10}$): The optimized geometry of helical Ala$_{10}$ predicted by PhysNet is virtually identical to ab initio results (RMSD = 0.21 \r{A}). By running unbiased molecular dynamics (MD) simulations of Ala$_{10}$ on the PhysNet-PES in gas phase, it is found that instead of a helical structure, Ala$_{10}$ folds into a wreath-shaped configuration, which is more stable than the helical form by 0.46 kcal mol$^{-1}$ according to the reference ab initio calculations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卫元灵完成签到,获得积分20
刚刚
英姑应助细腻的金毛采纳,获得10
刚刚
我方还剩艺人完成签到,获得积分10
1秒前
2秒前
glory0510发布了新的文献求助10
3秒前
九方嘉许完成签到,获得积分10
3秒前
曹先生发布了新的文献求助10
3秒前
明亮嘉熙发布了新的文献求助10
4秒前
儒雅的夜白完成签到,获得积分10
4秒前
天上掉下篇NCS完成签到,获得积分10
6秒前
琪琪完成签到,获得积分10
6秒前
6秒前
勤恳靖巧发布了新的文献求助10
7秒前
慕青应助小黑猴ps采纳,获得20
7秒前
幽幽又默默完成签到,获得积分10
8秒前
爱喝橘子汽水完成签到 ,获得积分20
8秒前
陶醉雪青应助顺利的边牧采纳,获得10
9秒前
星辰大海应助TTT0530采纳,获得10
10秒前
glory0510完成签到,获得积分10
10秒前
yueang发布了新的文献求助10
11秒前
善良的尔烟应助lucy_zi采纳,获得10
11秒前
11秒前
巴巴塔发布了新的文献求助10
11秒前
浮游应助zjy采纳,获得10
12秒前
momo完成签到,获得积分10
13秒前
科目三应助zz采纳,获得10
13秒前
wangchenhong完成签到,获得积分20
13秒前
orixero应助勤恳靖巧采纳,获得10
14秒前
15秒前
happy发布了新的文献求助10
16秒前
17秒前
烟花应助DS采纳,获得10
17秒前
隐形晓兰发布了新的文献求助10
18秒前
ZaZa完成签到,获得积分10
18秒前
ireswork发布了新的文献求助10
19秒前
后知后觉发布了新的文献求助10
20秒前
郝誉发布了新的文献求助10
22秒前
22秒前
24秒前
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124930
求助须知:如何正确求助?哪些是违规求助? 4328978
关于积分的说明 13489368
捐赠科研通 4163582
什么是DOI,文献DOI怎么找? 2282431
邀请新用户注册赠送积分活动 1283622
关于科研通互助平台的介绍 1222842