PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges

偶极子 从头算 人工神经网络 计算机科学 静电学 可扩展性 统计物理学 物理 人工智能 量子力学 数据库
作者
Oliver T. Unke,Markus Meuwly
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:15 (6): 3678-3693 被引量:779
标识
DOI:10.1021/acs.jctc.9b00181
摘要

In recent years, machine learning (ML) methods have become increasingly popular in computational chemistry. After being trained on appropriate ab initio reference data, these methods allow to accurately predict the properties of chemical systems, circumventing the need for explicitly solving the electronic Schr\"odinger equation. Because of their computational efficiency and scalability to large datasets, deep neural networks (DNNs) are a particularly promising ML algorithm for chemical applications. This work introduces PhysNet, a DNN architecture designed for predicting energies, forces and dipole moments of chemical systems. PhysNet achieves state-of-the-art performance on the QM9, MD17 and ISO17 benchmarks. Further, two new datasets are generated in order to probe the performance of ML models for describing chemical reactions, long-range interactions, and condensed phase systems. It is shown that explicitly including electrostatics in energy predictions is crucial for a qualitatively correct description of the asymptotic regions of a potential energy surface (PES). PhysNet models trained on a systematically constructed set of small peptide fragments (at most eight heavy atoms) are able to generalize to considerably larger proteins like deca-alanine (Ala$_{10}$): The optimized geometry of helical Ala$_{10}$ predicted by PhysNet is virtually identical to ab initio results (RMSD = 0.21 \r{A}). By running unbiased molecular dynamics (MD) simulations of Ala$_{10}$ on the PhysNet-PES in gas phase, it is found that instead of a helical structure, Ala$_{10}$ folds into a wreath-shaped configuration, which is more stable than the helical form by 0.46 kcal mol$^{-1}$ according to the reference ab initio calculations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuw_tao发布了新的文献求助10
刚刚
hzhang0807完成签到,获得积分10
1秒前
1秒前
科研通AI6应助懒羊羊采纳,获得10
1秒前
2秒前
1238125446发布了新的文献求助10
2秒前
vadfdfb发布了新的文献求助10
2秒前
专一的从凝完成签到,获得积分10
2秒前
Sherlock完成签到,获得积分10
2秒前
华仔应助Paranoid采纳,获得10
2秒前
ChemistryZyh完成签到,获得积分10
3秒前
3秒前
4秒前
yyds完成签到,获得积分10
4秒前
4秒前
4秒前
6秒前
Ann发布了新的文献求助10
6秒前
Larvenpiz完成签到,获得积分10
6秒前
7秒前
TEO完成签到 ,获得积分10
7秒前
cangmingzi发布了新的文献求助10
7秒前
7秒前
科研通AI6应助等待的友儿采纳,获得10
8秒前
zbearupz完成签到,获得积分10
8秒前
8秒前
王王完成签到,获得积分20
9秒前
9秒前
10秒前
烂漫书萱发布了新的文献求助10
10秒前
zfm发布了新的文献求助10
10秒前
orixero应助mm采纳,获得10
11秒前
11秒前
11秒前
网上飞完成签到,获得积分10
11秒前
思源应助愉快的夏青采纳,获得10
11秒前
充电宝应助123456采纳,获得10
12秒前
PangXidan应助沉默寄风采纳,获得10
12秒前
式微完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260201
求助须知:如何正确求助?哪些是违规求助? 4421658
关于积分的说明 13763924
捐赠科研通 4295852
什么是DOI,文献DOI怎么找? 2357059
邀请新用户注册赠送积分活动 1353410
关于科研通互助平台的介绍 1314622