PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges

偶极子 从头算 人工神经网络 计算机科学 静电学 可扩展性 统计物理学 物理 人工智能 量子力学 数据库
作者
Oliver T. Unke,Markus Meuwly
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:15 (6): 3678-3693 被引量:779
标识
DOI:10.1021/acs.jctc.9b00181
摘要

In recent years, machine learning (ML) methods have become increasingly popular in computational chemistry. After being trained on appropriate ab initio reference data, these methods allow to accurately predict the properties of chemical systems, circumventing the need for explicitly solving the electronic Schr\"odinger equation. Because of their computational efficiency and scalability to large datasets, deep neural networks (DNNs) are a particularly promising ML algorithm for chemical applications. This work introduces PhysNet, a DNN architecture designed for predicting energies, forces and dipole moments of chemical systems. PhysNet achieves state-of-the-art performance on the QM9, MD17 and ISO17 benchmarks. Further, two new datasets are generated in order to probe the performance of ML models for describing chemical reactions, long-range interactions, and condensed phase systems. It is shown that explicitly including electrostatics in energy predictions is crucial for a qualitatively correct description of the asymptotic regions of a potential energy surface (PES). PhysNet models trained on a systematically constructed set of small peptide fragments (at most eight heavy atoms) are able to generalize to considerably larger proteins like deca-alanine (Ala$_{10}$): The optimized geometry of helical Ala$_{10}$ predicted by PhysNet is virtually identical to ab initio results (RMSD = 0.21 \r{A}). By running unbiased molecular dynamics (MD) simulations of Ala$_{10}$ on the PhysNet-PES in gas phase, it is found that instead of a helical structure, Ala$_{10}$ folds into a wreath-shaped configuration, which is more stable than the helical form by 0.46 kcal mol$^{-1}$ according to the reference ab initio calculations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英勇的汉堡完成签到,获得积分10
2秒前
濡益完成签到 ,获得积分10
2秒前
bofu发布了新的文献求助20
2秒前
2秒前
3秒前
q792309106发布了新的文献求助10
4秒前
5秒前
z先生发布了新的文献求助10
8秒前
8秒前
光撒盐完成签到,获得积分10
8秒前
斯文雪青完成签到,获得积分10
9秒前
旋转的龙发布了新的文献求助10
10秒前
KK完成签到,获得积分10
11秒前
11秒前
宋娣发布了新的文献求助20
12秒前
xyx发布了新的文献求助10
13秒前
15秒前
可爱的以松完成签到,获得积分10
16秒前
16秒前
17秒前
纯真的诗兰完成签到,获得积分10
17秒前
17秒前
18秒前
z先生完成签到,获得积分20
18秒前
热心又蓝完成签到,获得积分10
18秒前
今后应助西扬采纳,获得30
19秒前
CipherSage应助开心的傲安采纳,获得10
19秒前
21秒前
21秒前
Manzhen发布了新的文献求助10
21秒前
cc完成签到,获得积分10
21秒前
22秒前
深情安青应助CG2021采纳,获得10
23秒前
shelly发布了新的文献求助10
23秒前
23秒前
mmiww完成签到,获得积分10
23秒前
哈哈哈发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
天天快乐应助顺利煎蛋采纳,获得30
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163