PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges

偶极子 从头算 人工神经网络 计算机科学 静电学 可扩展性 统计物理学 物理 人工智能 量子力学 数据库
作者
Oliver T. Unke,Markus Meuwly
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:15 (6): 3678-3693 被引量:779
标识
DOI:10.1021/acs.jctc.9b00181
摘要

In recent years, machine learning (ML) methods have become increasingly popular in computational chemistry. After being trained on appropriate ab initio reference data, these methods allow to accurately predict the properties of chemical systems, circumventing the need for explicitly solving the electronic Schr\"odinger equation. Because of their computational efficiency and scalability to large datasets, deep neural networks (DNNs) are a particularly promising ML algorithm for chemical applications. This work introduces PhysNet, a DNN architecture designed for predicting energies, forces and dipole moments of chemical systems. PhysNet achieves state-of-the-art performance on the QM9, MD17 and ISO17 benchmarks. Further, two new datasets are generated in order to probe the performance of ML models for describing chemical reactions, long-range interactions, and condensed phase systems. It is shown that explicitly including electrostatics in energy predictions is crucial for a qualitatively correct description of the asymptotic regions of a potential energy surface (PES). PhysNet models trained on a systematically constructed set of small peptide fragments (at most eight heavy atoms) are able to generalize to considerably larger proteins like deca-alanine (Ala$_{10}$): The optimized geometry of helical Ala$_{10}$ predicted by PhysNet is virtually identical to ab initio results (RMSD = 0.21 \r{A}). By running unbiased molecular dynamics (MD) simulations of Ala$_{10}$ on the PhysNet-PES in gas phase, it is found that instead of a helical structure, Ala$_{10}$ folds into a wreath-shaped configuration, which is more stable than the helical form by 0.46 kcal mol$^{-1}$ according to the reference ab initio calculations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lovesci发布了新的文献求助10
1秒前
1秒前
曾经发布了新的文献求助10
3秒前
科研通AI6应助孙孙孙采纳,获得30
3秒前
5秒前
大力发布了新的文献求助10
6秒前
在水一方应助1111采纳,获得10
6秒前
yy完成签到,获得积分10
6秒前
6秒前
666发布了新的文献求助10
7秒前
乐轩发布了新的文献求助10
8秒前
zz_1997完成签到 ,获得积分10
8秒前
李健应助wenxianxiazai123采纳,获得10
9秒前
一只猪发布了新的文献求助10
10秒前
秀丽的犀牛完成签到,获得积分10
10秒前
桃博完成签到,获得积分10
11秒前
严三笑发布了新的文献求助10
12秒前
12秒前
完美世界应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得30
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
虚幻访冬应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
xxfsx应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
孙孙应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207759
求助须知:如何正确求助?哪些是违规求助? 4385596
关于积分的说明 13657629
捐赠科研通 4244284
什么是DOI,文献DOI怎么找? 2328727
邀请新用户注册赠送积分活动 1326487
关于科研通互助平台的介绍 1278577